Kate2010
- 134
- 0
Homework Statement
I have to find f: R \rightarrow R which is discontinuous at the points of the set {1/n : n a positive integer}\cup {0} but continuous everywhere else.
Also find g: R \rightarrow R which is discontinuous at the points of the set {1/n : n a positive integer}but continuous everywhere else.
Homework Equations
The Attempt at a Solution
Could I define f as f(x) = 1/(integer(x) -1) for x \in [0,1) (where integer means round up to next integer), f(x) = x otherwise.
Similarly for g, can I say g(x) = 1/(integer(x) -1) for x \in (0,1) (where integer means round up to next integer), g(x) = x otherwise.
I'm not too sure about these functions but cannot think of any more 'normal' ones that would satisfy the criteria.