Continuity and Bernoulli's equation in air

AI Thread Summary
The discussion centers on understanding vortex shedding and the Karman vortex street formation around cylindrical objects in airflow. It highlights the necessity for fluid acceleration as it navigates around the cylinder, leading to a drop in pressure due to the adverse pressure gradient, which can cause boundary layer separation at high Reynolds numbers. The confusion arises from reconciling the Continuity Equation and Bernoulli's principle, particularly regarding pressure and velocity changes as the flow area decreases. The conversation also touches on the application of Bernoulli's equation to compressible fluids, emphasizing the need for additional terms in energy equations to account for internal energy and interactions. Overall, the complexities of fluid dynamics in this context are explored, particularly in relation to compressibility and energy conservation.
andrew700andrew
Messages
11
Reaction score
0
Hi, I'm trying to understand vortex shedding and how the Karman vortex street occurs when air flows around a cylindrical object, so far it's going OK but then I came across this part of the explanation which leaves me confused:

"Looking at the figure above, the formation of the separation occurs as the fluid accelerates from the centre to get round the cylinder (it must accelerate as it has further to go than the surrounding fluid). It reaches a maximum at Y, where it also has also dropped in pressure. The adverse pressure gradient between here and the downstream side of the cylinder will cause the boundary layer separation if the flow is fast enough, (Re > 2.)"

[Taken from here http://www.efm.leeds.ac.uk/CIVE/CIVE1400/Section4/boundary_layer.htm]

What I'm unsure about is why the air must accelerate to travel around the cylinder, which in turn creates a low pressure on top of the cylinder. I've tried to figure it out using the Continuity Equation p1*A1*v1 = p2*A2*v2 (p=density or pressure, A=area, v=velocity) and Bernoulli's equation but I come to a problem because assuming that flow Area decreases as you approach the middle of the cylinder, either p (i.e. pressure) or v could increase to maintain the equal relationship. If it's true that the pressure could increase (given this is air) then that would contradict the Bernoulli equation which suggests that the pressure should decrease as velocity increases. Bearing in mind that I haven't started University yet is there some way you could explain this to me?

Also, how can the Bernoulli's equation apply to this when air is compressible?

Thanks allot.
 
Last edited:
Physics news on Phys.org
Bernoulli equation is the energy conservation for Newtonian fluids. Newtonian fluids have no viscosity so reacts with bounds only by continuity equation. For one particle the energy is the sum of kinetic and external field dynamic energy. For a system of particles we must add a term of interaction energy, the internal energy. So:
$$ U + \sum \frac{1}{2}m_iv_i^2 + \sum m_igh_i = C(t) \,\Rightarrow\, \frac{U}{V} + \sum \frac{1}{2}\rho_iv_i^2 + \sum \rho_igh_i = C'(t) $$
All terms have energy density dimentions (the 1st is the pressure) and for comppresible fluids you must use something like state equation ## P = \rho RT##.
 
Hi there, im studying nanoscience at the university in Basel. Today I looked at the topic of intertial and non-inertial reference frames and the existence of fictitious forces. I understand that you call forces real in physics if they appear in interplay. Meaning that a force is real when there is the "actio" partner to the "reactio" partner. If this condition is not satisfied the force is not real. I also understand that if you specifically look at non-inertial reference frames you can...
I have recently been really interested in the derivation of Hamiltons Principle. On my research I found that with the term ##m \cdot \frac{d}{dt} (\frac{dr}{dt} \cdot \delta r) = 0## (1) one may derivate ##\delta \int (T - V) dt = 0## (2). The derivation itself I understood quiet good, but what I don't understand is where the equation (1) came from, because in my research it was just given and not derived from anywhere. Does anybody know where (1) comes from or why from it the...
Back
Top