Continuous functions with multiple variables

cappygal
Messages
9
Reaction score
0
I need to find a value for f at (0,0) to make this function continuous:

f(x,y)=sqrt(x^2+y^2)/[abs(x) + abs(y)^(1/3)]

With other functions in this problem I simply took the limit .. but taking the limit gives 0/0. In single-variable calculus I would apply l'hopital's rule to this, but I'm not sure what to do with multiple variables.

I also need to do the same for:

f(x,y)=(x^2 + y^2)*ln(x^2 + 2y^2)

For this one, you get 0*0, again an indeterminant form. In single variable I would manipulate it until I got 0/0 and then apply l'hopital .. but I'm lost in multivariable.
 
Physics news on Phys.org
In f(x,y)=sqrt(x^2+y^2)/[abs(x) + abs(y)^(1/3)] the numerator goes to 0 faster than the denominator (e.g. along x=y); so my guess is f(0,0) = 0.

0*0 is not indet., it is 0. But ln(0) = -infty so you have -0*infty, which is indet. I don't have an answer for that one (yet).
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...

Similar threads

Replies
2
Views
1K
Replies
10
Views
1K
Replies
40
Views
4K
Replies
27
Views
2K
Replies
4
Views
1K
Replies
11
Views
1K
Replies
8
Views
2K
Back
Top