Contravariant and covariant indices

spookyfish
Messages
53
Reaction score
0
When we write contravariant and covariant indices, for example for the Lorentz transformation, does it matter if we write \Lambda^\mu\,_\nu or \Lambda^\mu_\nu?
i.e. if the \nu index is to the right of the \mu or they are at the same place with respect to left-right?
 
Physics news on Phys.org
Lorentz transformations are linear operators on ##\mathbb R^4## (or ##\mathbb R^2## or ##\mathbb R^3##). So they can be represented by matrices. (See the https://www.physicsforums.com/showthread.php?t=694922 about matrix representations of linear transformations). I will not make any notational distinction between a linear operator and its matrix representation with respect to the standard basis.

Let ##\Lambda## be an arbitrary Lorentz transformation. By definition of Lorentz transformation, we have ##\Lambda^T\eta\Lambda=\eta##. This implies that ##\Lambda^{-1}=\eta^{-1}\Lambda^T\eta##. Let's use the notational convention that for all matrices X, we denote the entry on row ##\mu##, column ##\nu## by ##X^\mu{}_\nu##. If we use this convention, the definition of matrix multiplication, our formula for ##\Lambda^{-1}## and the convention that every index that appears twice is summed over, we get
$$(\Lambda^{-1})^\mu{}_\nu = (\eta^{-1})^\mu{}_\rho (\Lambda^T)^\rho{}_\sigma \eta^\sigma{}_\nu = (\eta^{-1})^\mu{}_\rho \Lambda^\sigma{}_\rho \eta^\sigma{}_\nu.$$ This is where things get funny. It's conventional to write ##\eta_{\mu\nu}## instead of ##\eta^\mu{}_\nu##, and ##\eta^{\mu\nu}## instead of ##(\eta^{-1})^\mu{}_\nu##. If we use this convention, we have
$$(\Lambda^{-1})^\mu{}_\nu = \eta^{\mu\rho} \Lambda^\sigma{}_\rho \eta_{\sigma\nu}.$$ Now if we also use the convention that ##\eta^{\mu\nu}## raises indices and ##\eta_{\mu\nu}## lowers them, we end up with
$$(\Lambda^{-1})^\mu{}_\nu = \Lambda_\nu{}^\mu.$$ So if ##\Lambda## isn't the identity transformation, we have
$$\Lambda_\nu{}^\mu = (\Lambda^{-1})^\mu{}_\nu \neq \Lambda^\mu{}_\nu.$$ As you can see, the inequality is a result of the definitions of ##\eta_{\mu\nu}## and ##\eta^{\mu\nu}##, so if you use a notational convention that denotes these things by something else, or doesn't use these things to raise and lower indices, it may be OK to write ##\Lambda^\mu_\nu##.
 
Last edited by a moderator:
Thread 'Can this experiment break Lorentz symmetry?'
1. The Big Idea: According to Einstein’s relativity, all motion is relative. You can’t tell if you’re moving at a constant velocity without looking outside. But what if there is a universal “rest frame” (like the old idea of the “ether”)? This experiment tries to find out by looking for tiny, directional differences in how objects move inside a sealed box. 2. How It Works: The Two-Stage Process Imagine a perfectly isolated spacecraft (our lab) moving through space at some unknown speed V...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. The Relativator was sold by (as printed) Atomic Laboratories, Inc. 3086 Claremont Ave, Berkeley 5, California , which seems to be a division of Cenco Instruments (Central Scientific Company)... Source: https://www.physicsforums.com/insights/relativator-circular-slide-rule-simulated-with-desmos/ by @robphy
Does the speed of light change in a gravitational field depending on whether the direction of travel is parallel to the field, or perpendicular to the field? And is it the same in both directions at each orientation? This question could be answered experimentally to some degree of accuracy. Experiment design: Place two identical clocks A and B on the circumference of a wheel at opposite ends of the diameter of length L. The wheel is positioned upright, i.e., perpendicular to the ground...
Back
Top