Convergence for recursive sequence

economist1985
Messages
8
Reaction score
0

Homework Statement



Let x_1=1 and let x_n=x_n-1 + 1/n^n for n>1. Show that x1, x2, ... is convergent.

Homework Equations





The Attempt at a Solution



I have managed to transform x_n=summation(1/n^n). How do I show that this is convergent?
 
Physics news on Phys.org
You could compare that series with \sum \frac{1}{n^2}
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top