twoflower
- 363
- 0
Hi all,
I have few questions about this excercise:
Analyse pointwise, uniform and local uniform convergence of this series of functions:
<br /> \sum_{k=2}^{\infty}\log \left(1 + \frac{x^2}{k \log^2 k} \right)<br />
I'm trying to do it using Weierstrass' criterion. To recall it, it says
<br /> \mbox{Let } f_n \mbox{ are defined on } 0 \neq M \subset \mathbb{R}\mbox{, let }<br /> S_n := \sup_{x \in M} \left| f_{n}(x)\right|, n \in \mathbb{N}. \mbox{ If } <br /> \sum_{n=1}^{\infty} S_n < \infty\mbox{, then } \sum_{n=1}^{\infty} f_{n}(x) \rightrightarrows \mbox{ on } M.<br />
How to find
<br /> \sup_{x \in M} \left| f_{n}(x)\right|<br />
?
The derivative is
<br /> \left(\log \left(1 + \frac{x^2}{k \log^2 k} \right)\right)^{'} = \frac{2x}{k\log^2 k + x^2}<br />
It means that the function is growing for x > 0. x going to infinity would bring us problems, so I will take x \in [-K, K], where -\infty < -K < K < \infty.
Then
<br /> \sup_{x \in M} \left| f_{n}(x)\right| = \log \left( 1 + \frac{K^2}{n \log^{2} n}\right)<br />
But I don't know how to prove that
<br /> \sum_{n=2}^{\infty} \log \left( 1 + \frac{K^2}{n \log^{2} n}\right) \mbox{ converges}<br />
Could someone point me to the right direction please?
Thank you.
I have few questions about this excercise:
Analyse pointwise, uniform and local uniform convergence of this series of functions:
<br /> \sum_{k=2}^{\infty}\log \left(1 + \frac{x^2}{k \log^2 k} \right)<br />
I'm trying to do it using Weierstrass' criterion. To recall it, it says
<br /> \mbox{Let } f_n \mbox{ are defined on } 0 \neq M \subset \mathbb{R}\mbox{, let }<br /> S_n := \sup_{x \in M} \left| f_{n}(x)\right|, n \in \mathbb{N}. \mbox{ If } <br /> \sum_{n=1}^{\infty} S_n < \infty\mbox{, then } \sum_{n=1}^{\infty} f_{n}(x) \rightrightarrows \mbox{ on } M.<br />
How to find
<br /> \sup_{x \in M} \left| f_{n}(x)\right|<br />
?
The derivative is
<br /> \left(\log \left(1 + \frac{x^2}{k \log^2 k} \right)\right)^{'} = \frac{2x}{k\log^2 k + x^2}<br />
It means that the function is growing for x > 0. x going to infinity would bring us problems, so I will take x \in [-K, K], where -\infty < -K < K < \infty.
Then
<br /> \sup_{x \in M} \left| f_{n}(x)\right| = \log \left( 1 + \frac{K^2}{n \log^{2} n}\right)<br />
But I don't know how to prove that
<br /> \sum_{n=2}^{\infty} \log \left( 1 + \frac{K^2}{n \log^{2} n}\right) \mbox{ converges}<br />
Could someone point me to the right direction please?
Thank you.