Dodobird
- 12
- 0
Homework Statement
Be K \geq 1. Conclude out of the statement that \lim_{n \to \infty } \sqrt[n]{n} = 1, dass \sqrt[n]{K} = 1
The Attempt at a Solution
\lim_{n \to \infty } \sqrt[n]{K} \Rightarrow 1 \leq \sqrt[n]{K} \geq 1 + ...
I got issues with the right inequality, where the 3 dots are. I´m not sure if just insert the \sqrt[n]{n} there and that s about it.
Thanks in advance ;)
Christian...