Convergence Test: Does \sum(-1)^n-1(lnp(n)/n) {p>0} converge or diverge?

  • Thread starter Thread starter Dell
  • Start date Start date
Dell
Messages
555
Reaction score
0
i need to tell if the following sequence converges or diverges

\sum(-1)n-1lnp(n)/n {p>0}
(n from 1 to infinity)

what i think i need to do is take the positive version of this series

\sumlnp(n)/n {p>0}
(n from 1 to infinity)
if the positive series converges than the original must also, if not i can use leibnitz to tell me its behaviour

the problem it the "p", surely {p>0} is not enough information, do i not need to know if p>1 or p<1?

i can integrate \int(lnp(x)/x)dx ===> t=lnx dt=dx/x

\inttpdt
=tp+1/(p+1) =...

...lnp+1(n)|^{infinity}_{1}

if P>-1 \sumlnp(n)/n diverges
if P<-1 \sumlnp(n)/n converges
if p=-1 \sumlnp(n)/n diverges

but i am told that {p>0} therefor i am only left with one option
if P>-1 \sumlnp(n)/n diverges

so now i need to check if:
- lim An = 0
- An+1< An
 
Last edited:
Physics news on Phys.org
lim An= ln^p(n)/n = 0

so now how do i prove that An > A(n+1)
 
Last edited:
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...

Similar threads

Replies
3
Views
1K
Replies
5
Views
2K
Replies
2
Views
2K
Replies
4
Views
1K
Replies
1
Views
1K
Replies
1
Views
1K
Replies
3
Views
7K
Back
Top