Convergence Test for Alternating Series and When to Use It

ichilouch
Messages
9
Reaction score
0

Homework Statement


Ʃ cos(k*pi)/k from 1 to infinity.
This is a test for convergence.

and when is the proper time to use the alternating series test
like using it on (-1)k(4k/8k) would result to divergence
since lim of (4k/8k) is infinity and not 0 but the function is really
convergent by the geometric series?

Homework Equations





The Attempt at a Solution


Is it right to do this:

for k is odd cos is negative and for k is even cos is positive
then
cos(k*pi)\k < (-1)k/k
and by alternating series test ;
(-1)k*(1/k) since 1/k is decreasing and lim as 1/k approaches infinity is 0 then
(-1)k1/k converges thus cos(k*pi)/k converges by direct comparison test.
[
 
Physics news on Phys.org
That is perfectly OK for the alternating 1/k-series! :smile:

"since lim of (4^k/8^k) is infinity"
Is it?
 
Thanks for the reply
So rechecking limit of (4/8)^k as k approaches infinity is 0
Then if it is sine or cosine over a variable, the comparison test for it is (-1)^k?
and if it is sine or cosine squared, the comparison is 1 only?
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top