talolard
- 119
- 0
Homework Statement
Does \int_{0}^{\infty}\frac{dx}{1+\left(xsinx\right)^{2}} converge?
I don't know if this is a legitimate solution. Any insight? Thanks
Tal
The Attempt at a Solution
No.
<br /> f(x)=\frac{1}{1+\left(xsinx\right)^{2}}\geq g(x)=\begin{cases}<br /> \frac{1}{1+\left(xsin(x)\right)^{2}} & 2\pi k\leq x\leq2\pi k+\pi\\<br /> 0 & \else\end{cases}
Then \int_{0}^{\infty}\frac{dx}{1+\left(xsinx\right)^{2}}\geq\int_{0}^{\infty}g(x)=\sum_{k=0}\int_{2\pi k}^{2\pi k+\pi}\frac{1}{1+\left(xsin(x)\right)^{2}}\geq\sum_{k=0}\int_{2\pi k}^{2\pi k+\pi}\frac{1}{1+\left(\frac{\pi}{2}\right)^{2}}=\sum_{k=0}^{\infty}\frac{\pi}{1+\left(\frac{\pi}{2}\right)^{2}}