I Converse of focus-directrix property of conic sections

arham_jain_hsr
Messages
25
Reaction score
9
TL;DR Summary
If the locus of some points follows the focus-directrix property, then is the curve ALWAYS the cross-section of a cone?
In my recent study of Conic Sections, I have come across several proofs (many of those comprise Dandelin spheres) showing that the cross-section of a cone indeed follows the focus-directrix property:

"For a section of a cone, the distance from a fixed point (the focus) is proportional to the distance from a fixed line (the directrix), the constant of proportionality being called the eccentricity."

But, in order to truly establish equivalence between the two definitions of the conic sections, I am curious to know whether the converse of this is also true. That is, if the locus of some points follows the focus-directrix property, then is the curve ALWAYS the cross-section of a cone?
 
Mathematics news on Phys.org
You can calculate the equation of a general conic section in the plane of the section.

You can calculate the equation of a general plane curve that satisfies the focus-directrix property.

Now compare the two.
 
pasmith said:
You can calculate the equation of a general conic section in the plane of the section.

You can calculate the equation of a general plane curve that satisfies the focus-directrix property.

Now compare the two.
For the focus-directrix property, the equations are fairly obvious, that the point should have a certain ratio with the focus and directrix. What are the conditions that govern the formation of equations for the section of a cone definition?
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top