I Converse of focus-directrix property of conic sections

AI Thread Summary
The discussion explores the focus-directrix property of conic sections, emphasizing that the distance from a fixed point (focus) is proportional to the distance from a fixed line (directrix), with eccentricity as the proportionality constant. The inquiry centers on whether the converse is true: if a locus of points adheres to the focus-directrix property, does it necessarily represent a conic section derived from a cone? Participants are encouraged to compare the equations of general conic sections with those of plane curves satisfying the focus-directrix property. The conversation also seeks to clarify the conditions that define the equations for conic sections. Establishing this equivalence could deepen the understanding of conic sections in geometry.
arham_jain_hsr
Messages
25
Reaction score
9
TL;DR Summary
If the locus of some points follows the focus-directrix property, then is the curve ALWAYS the cross-section of a cone?
In my recent study of Conic Sections, I have come across several proofs (many of those comprise Dandelin spheres) showing that the cross-section of a cone indeed follows the focus-directrix property:

"For a section of a cone, the distance from a fixed point (the focus) is proportional to the distance from a fixed line (the directrix), the constant of proportionality being called the eccentricity."

But, in order to truly establish equivalence between the two definitions of the conic sections, I am curious to know whether the converse of this is also true. That is, if the locus of some points follows the focus-directrix property, then is the curve ALWAYS the cross-section of a cone?
 
Mathematics news on Phys.org
You can calculate the equation of a general conic section in the plane of the section.

You can calculate the equation of a general plane curve that satisfies the focus-directrix property.

Now compare the two.
 
pasmith said:
You can calculate the equation of a general conic section in the plane of the section.

You can calculate the equation of a general plane curve that satisfies the focus-directrix property.

Now compare the two.
For the focus-directrix property, the equations are fairly obvious, that the point should have a certain ratio with the focus and directrix. What are the conditions that govern the formation of equations for the section of a cone definition?
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top