MHB Convert another equation x^2+y^2=4 to polar form

Click For Summary
The equation x^2 + y^2 = 4 represents a circle centered at the origin with a radius of 2. To convert it to polar form, substitute x and y with their polar equivalents: x = r cos(θ) and y = r sin(θ). This leads to the equation r^2 cos^2(θ) + r^2 sin^2(θ) = 4, which simplifies using the Pythagorean identity to r^2 = 4. Therefore, the polar form of the equation is r = 2.
Elissa89
Messages
52
Reaction score
0
x^2+y^2=4

I have so far:

(r^2)cos^(theta)+(r^2)sin(theta)=4

Idk what I'm supposed to do from here
 
Mathematics news on Phys.org
You need to also square the trig. functions:

$$x^2+y^2=4$$

$$(r\cos(\theta))^2+(r\sin(\theta))^2=4$$

$$r^2\cos^2(\theta)+r^2\sin^2(\theta)=4$$

Factor the LHS...what do you have...is there a trig. identity you can apply?
 
MarkFL said:
You need to also square the trig. functions:

$$x^2+y^2=4$$

$$(r\cos(\theta))^2+(r\sin(\theta))^2=4$$

$$r^2\cos^2(\theta)+r^2\sin^2(\theta)=4$$

Factor the LHS...what do you have...is there a trig. identity you can apply?

got it! thanks!
 
Elissa89 said:
got it! thanks!

We see we have a circle centered at the origin, and in polar coordinates, that's simply a constant value for \(r\). The Cartesian equation:

$$x^2+y^2=a^2$$ where \(0<a\)

Has the polar equation:

$$r=a$$
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 1 ·
Replies
1
Views
4K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K