Convert Strain gauge readings to stress

AI Thread Summary
To convert strain gauge readings from an I beam subjected to torsion into stress and shear stress, the formula τ = Tr/J is applicable, but calculating the polar moment of inertia (J) and radius (r) for an I beam can be complex. Young's Modulus and Poisson's ratio are crucial for accurate calculations, with the latter typically around 0.295 to 0.3 for wrought mild steel. The orientation of the strain gauges and the nature of the applied torque must be considered for precise results. Resources like Omer Blodgett's "Design of Weldments" can provide further guidance on these calculations. Understanding the material properties and beam geometry is essential for accurate stress conversion.
howsaboutno
Messages
8
Reaction score
0
Hello i am trying to convert the strain gauge readings i took in a lab from an I beam that was subjected to torsion. I am trying to convert the microstrain readings to stress and shear stress. I have the following information the Yield strength of the I beam and the youngs modulus but not the poissons ratio.

I thought the formula would be \tau= Tr/J but because it is an I beam i am unsure how to calculate the r and the J. also i know what the T (torsion) that the beam is subjected to.

any help would be very much appreciated.
 
Engineering news on Phys.org
Tr/J where J is polar moment of inertia only works for closed sections. Long explanation, but the most brief/clear I've seen is Omer Blodgett's in Design of Weldments (and repeated in other texts by the same author) available VERY inexpensively from the J.F. Lincoln Arc Welding Foundation.
(One quick visualization is in applying a torque to a tube, and measure the angular displacement. Then slit one side of the tube lengthwise, and apply the same torque. The displacement will be much larger in the 2nd instance even though the areas and polar moment of inertia will be essentially the same. This is because the torsional shear stress is the same on the plane normal to the axis of the tube as it is on the longitudinal. When you get to the slit, the shear stress has to be zero, because there's nothing there to resist it on the longitudinal plane.)

Young's Modulus and Poisson's ratio depend on the material (and to some degree the form e.g. cast, wrought, etc.). Assuming you have wrought mild steel (structural steel) your Poisson ratio is likely to be 0.295 to 0.3.
 
What is the orientation of your strain gauge(s) on the I-Beam and was the beam subjected to strictly a torque ?
 
Thread 'I need a concave mirror with a focal length length of 150 feet?'
I need to cut down a 3 year old dead tree from top down so tree causes no damage with small pieces falling. I need a mirror with a focal length of 150 ft. 12" diameter to 36" diameter will work good but I can't think of any easy way to build it. Nothing like this for sale on Ebay. I have a 30" Fresnel lens that I use to burn stumps it works great. Tree service wants $2000.
Hi all, i have some questions about the tesla turbine: is a tesla turbine more efficient than a steam engine or a stirling engine ? about the discs of the tesla turbine warping because of the high speed rotations; does running the engine on a lower speed solve that or will the discs warp anyway after time ? what is the difference in efficiency between the tesla turbine running at high speed and running it at a lower speed ( as fast as possible but low enough to not warp de discs) and: i...
Thread 'Where is my curb stop?'
My water meter is submerged under water for about 95% of the year. Today I took a photograph of the inside of my water meter box because today is one of the rare days that my water meter is not submerged in water. Here is the photograph that I took of my water meter with the cover on: Here is a photograph I took of my water meter with the cover off: I edited the photograph to draw a red circle around a knob on my water meter. Is that knob that I drew a red circle around my meter...
Back
Top