MHB Convert V: 10< 90 Degrees + 66 - j10V at 10k Rads/s

  • Thread starter Thread starter csmith23
  • Start date Start date
  • Tags Tags
    Phasors Sinusoids
AI Thread Summary
The discussion revolves around converting the complex voltage expression V = 10<90 degrees + 66 - j(10 V) at an angular frequency of 10k rads/s. The initial confusion stems from the conversion of the complex number into a time-domain function. The correct simplification reveals that the imaginary components cancel out, leading to a final result of 66. The conclusion is that the voltage can be expressed as 66cos(10^4t). This highlights the importance of careful algebraic manipulation in complex number conversions.
csmith23
Messages
16
Reaction score
0
Question: Convert V = 10< 90 degrees + 66 - j(10 V) at angular frequency = 10k rads/s.

I am stuck here 10(cos(90)+ j(sin(90)) + 66 - j(10)

which would then be: 0 + j + 66 - j(10)
 
Mathematics news on Phys.org
Convert to what?

csmith23 said:
Question: Convert V

Do you have the original problem wording?
Convert to what?
1) V(t)=V(0)sin(wt+p) where t=time and V(0), w, p are real?
2) V(t)=V(0)Cos(wt+p) where t=time and V(0), w, p are real?
3) Other?
 
Last edited:
V(a)cos(\omegat+\phi)
 
csmith23 said:
V(a)cos(\omegat+\phi)
V(t)=V(0)cos($\omega$t+$\phi$)
You are very close,
what is the angle represented by j + 66 - j(10)? That is $\phi$.

Can you find $\omega$ from the given frequency?
Can you find V(0); it is the magnitude of j + 66 - j(10)?
 
Last edited:
actually I am already given \omega, that is what angular frequency is. Although just re reading my initial post, I can spot my problem. I made an algebraic error:

10(cos(90)+ j(sin(90)) + 66 - j(10)

corrected: 10(0) + j(10) + 66 - j(10)

which just simplifies to 66, while the imaginary cancel out

Final answer: 66cos(10^4t)​

Thanks for your help!
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top