MHB Convert V: 10< 90 Degrees + 66 - j10V at 10k Rads/s

  • Thread starter Thread starter csmith23
  • Start date Start date
  • Tags Tags
    Phasors Sinusoids
csmith23
Messages
16
Reaction score
0
Question: Convert V = 10< 90 degrees + 66 - j(10 V) at angular frequency = 10k rads/s.

I am stuck here 10(cos(90)+ j(sin(90)) + 66 - j(10)

which would then be: 0 + j + 66 - j(10)
 
Mathematics news on Phys.org
Convert to what?

csmith23 said:
Question: Convert V

Do you have the original problem wording?
Convert to what?
1) V(t)=V(0)sin(wt+p) where t=time and V(0), w, p are real?
2) V(t)=V(0)Cos(wt+p) where t=time and V(0), w, p are real?
3) Other?
 
Last edited:
V(a)cos(\omegat+\phi)
 
csmith23 said:
V(a)cos(\omegat+\phi)
V(t)=V(0)cos($\omega$t+$\phi$)
You are very close,
what is the angle represented by j + 66 - j(10)? That is $\phi$.

Can you find $\omega$ from the given frequency?
Can you find V(0); it is the magnitude of j + 66 - j(10)?
 
Last edited:
actually I am already given \omega, that is what angular frequency is. Although just re reading my initial post, I can spot my problem. I made an algebraic error:

10(cos(90)+ j(sin(90)) + 66 - j(10)

corrected: 10(0) + j(10) + 66 - j(10)

which just simplifies to 66, while the imaginary cancel out

Final answer: 66cos(10^4t)​

Thanks for your help!
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top