newphysist
- 12
- 0
Hi,
I am starting to learn real math I would say for first time in life. I have come across this function:
The domain is R.
Does the above function mean f(x) = 0 since for for x in R max and min of x would be x itself.
Hence it is convex as for any θ ≥ 0 we can write:
In above both x and y would be any R.
Thanks for helping me learn.
I am starting to learn real math I would say for first time in life. I have come across this function:
Code:
f(x) = max[SUB]i[/SUB](x[SUB]i[/SUB]) - min[SUB]i[/SUB](x[SUB]i[/SUB])
The domain is R.
Does the above function mean f(x) = 0 since for for x in R max and min of x would be x itself.
Hence it is convex as for any θ ≥ 0 we can write:
Code:
θ.x + (1-θ).y = 0 ≤ f(θ.x + (1-θ).y)
f(θ.x + (1-θ).y) = 0
In above both x and y would be any R.
Thanks for helping me learn.