Cooper Pairs: Definition and Formation Process

  • Thread starter Thread starter Greg Bernhardt
  • Start date Start date
AI Thread Summary
Cooper pairs are defined as bound states of two electrons with equal and opposite momentum and spin, forming in normal metals under low temperatures due to attractive phonon-mediated interactions and the presence of the Fermi surface. The formation of these pairs is crucial for superconductivity, as they overcome the repulsive Coulomb force through screening effects from other mobile electrons. The mathematical representation of Cooper pairs includes a wave function that describes their spin-singlet state and a real-space component influenced by the Fermi energy. The existence of a bound state is facilitated by the Fermi surface, which effectively creates a two-dimensional density of states. Understanding Cooper pairs is essential for grasping the mechanisms behind superconductivity in metals.
Messages
19,773
Reaction score
10,726
Definition/Summary

A bound state of two electrons having equal and opposite momentum and spin. These states can form in a normal metal due to: 1) an attractive phonon-mediated interaction, and 2) the presence of the Fermi surface. The formation of Cooper pairs in a normal metal will occur if the temperature is low enough and will cause the metal to become a superconductor.

Equations

<br /> \psi({\bf r_1},\sigma_1;{\bf r_2},\sigma_2)=<br /> \left(\alpha(\sigma_1)\beta(\sigma_2)-\beta(\sigma_1)\alpha(\sigma_2)\right)\sum_{{\bf k},k&gt;k_F}\frac{\cos({\bf k}\cdot({\bf r_1}-{\bf r_2}))}{2\epsilon_k-E}\;,<br />
where the first factor is the spin-singlet part of the wave function, and the next factor is the symmetric real-space part of the wave function.

In the above equation \epsilon_k=k^2/2m and E is the energy of the Cooper pair, given in the weak coupling approximation by E=2E_F-2\hbar\omega_c e^{-2/(\nu(0)V)}, where E_F is the Fermi energy, \hbar is the reduced Planck constant, \omega_c is an effective cutoff energy specifying over what interval the effective attraction is non-zero and equal to -V, and \nu(0) is the density of states at the Fermi energy.

Extended explanation

One of the obvious problems with the idea of a bound state of two electrons is that the electrons have the same charge. Thus, in addition to an attractive phonon-mediated force there is a repulsive Coulomb force. The way around this problem is the effect of screening. In a metal there are many mobile electrons in addition to the two electrons making up the Cooper pair. It is possible that these "other" electrons screen the Coulomb repulsion enough that the phonon-mediated attraction is dominant.

But, even if the net force is attractive between electrons, this does not necessitate the existence of a bound state. Only in two or fewer dimensions will an arbitrarily weak attraction lead to a bound state. The way out of this dilemma is the existence of a Fermi surface. The fact that the two electrons making up a Cooper pair are above the filled "Fermi Sea" of the normal metal make the density of states appear two dimensional and allows for the existence of a bound state.

* This entry is from our old Library feature. If you know who wrote it, please let us know so we can attribute a writer. Thanks!
 
Physics news on Phys.org
Thanks for your overview on Cooper Pairs
 
I think it's easist first to watch a short vidio clip I find these videos very relaxing to watch .. I got to thinking is this being done in the most efficient way? The sand has to be suspended in the water to move it to the outlet ... The faster the water , the more turbulance and the sand stays suspended, so it seems to me the rule of thumb is the hose be aimed towards the outlet at all times .. Many times the workers hit the sand directly which will greatly reduce the water...
Back
Top