(adsbygoogle = window.adsbygoogle || []).push({}); 1. The problem statement, all variables and given/known data

Let S = {v1,v2,...,vn} be a basis for an n-dimensional vector space V. Show that {[v1]s,[v2]s,...[vn]s} is a basis for Rn.

Here [v]s means the coordinate vector with respect to the basis S.

2. Relevant equations

[v]s is the coordinate vector with respect to the basis S.

3. The attempt at a solution

S={v1..vn} is a basis and must be linearly independent.

Any vector v in S then is a unique linear combination of the vectors in S, so v=a1v1+a2v2+...+anvn.

Since [v]s in general = (a1,a2,...an), then every [vi]s where i = 1 .. n has a unique (a1,a2,...,an) and so the basis {[v1]s,...,[v2]s} will be linearly independent and thus form a basis for Rn.

I have no answers to verify with, so I would like to know if I have answered it correctly. I am extremely weak with anything to do with proving so any assistance would be greatly appreciated, :).

**Physics Forums - The Fusion of Science and Community**

# Coordinate vector basis proving question

Know someone interested in this topic? Share a link to this question via email,
Google+,
Twitter, or
Facebook

Have something to add?

- Similar discussions for: Coordinate vector basis proving question

Loading...

**Physics Forums - The Fusion of Science and Community**