• Support PF! Buy your school textbooks, materials and every day products Here!

Coplanar and Linear dependency.

  • Thread starter jrotmensen
  • Start date
  • #1

Homework Statement


Prove that vectors u, v, w are coplanar if and only if vectors u, v and w are linearly dependent.


[tex]\overline{v}_{3}=\alpha\overline{v}_{1}+\beta\overline{v}_{2}[/tex] (Coplanar Vector Property)
[tex]\alpha\overline{v}_{1}+\beta\overline{v}_{2}+\gamma\overline{v}_{3}=\overline{0}[/tex] (linearly dependent vector property)
 
Last edited:

Answers and Replies

  • #2
HallsofIvy
Science Advisor
Homework Helper
41,777
911

Homework Statement


Prove that vectors u, v, w are coplanar if and only if vectors u, v and w are linearly dependent.


[tex]\overline{v}_{3}=\alpha\overline{v}_{1}+\beta\overline{v}_{2}[/tex] (Coplanar Vector Property)
[tex]\alpha\overline{v}_{1}+\beta\overline{v}_{2}+\gamma\overline{v}_{3}=\overline{0}[/tex] (linearly dependent vector property)
State the entire properties! What you have are equations, not properties.

"Three vectors, [itex]v_1[/itex], [itex]v_2[/itex], and [itex]v_3[/itex] are coplanar if and only if
[tex]\overline{v}_{3}=\alpha\overline{v}_{1}+\beta\overline{v}_{2}[/tex]
or
[tex]\overline{v}_{1}=\alpha\overline{v}_{2}+\beta\overline{v}_{3}[/tex]
or
[tex]\overline{v}_{2}=\alpha\overline{v}_{1}+\beta\overline{v}_{3}[/tex]
for some numbers [itex]\alpha[/itex] and [itex]\beta[/itex]"

"Three vectors, [itex]v_1[/itex], [itex]v_2[/itex], and [itex]v_3[/itex] are dependent if [tex]\alpha\overline{v}_{1}+\beta\overline{v}_{2}+\gamma\overline{v}_{3}=\overline{0}[/tex]
with not all of [itex]\alpha[/itex], [itex]\beta[/itex], [itex]\gamma[/itex] equal to 0."

Suppose [itex]\vec{v_1}[/itex], [itex]\vec{v_2}[/itex], and [itex]\vec{v_3}[/itex] are planar. Subtract the right side of that equation from both sides.

Suppose [itex]\vec{v_1}[/itex], [itex]\vec{v_2}[/itex], and [itex]\vec{v_3}[/itex] are dependent. Solve that equation for one of the vectors.
 
Last edited by a moderator:

Related Threads for: Coplanar and Linear dependency.

Replies
1
Views
3K
Replies
1
Views
3K
  • Last Post
Replies
14
Views
2K
  • Last Post
Replies
1
Views
4K
  • Last Post
Replies
5
Views
2K
  • Last Post
Replies
5
Views
2K
  • Last Post
Replies
2
Views
846
  • Last Post
Replies
8
Views
1K
Top