Correlation with two independent variables

rhuelu
Messages
17
Reaction score
0
I would appreciate some help with this problem. Assuming X and Y are independent, I'm trying to find the correlation between XY and Y in terms of the means and standard deviations of X and Y. I'm not sure how to simplify cov(XY,Y)=E(XYY)-E(XY)E(Y)
=E(XY^2)-E(X)E(Y)^2.

If X and Y are independent, does it follow that X and Y^2 are independent. If this is the case, then covariance is zero --> correlation is zero. If this isn't the case I'm really not sure how to proceed. Any help is appreciated...
 
Physics news on Phys.org


rhuelu said:
I would appreciate some help with this problem. Assuming X and Y are independent, I'm trying to find the correlation between XY and Y in terms of the means and standard deviations of X and Y. I'm not sure how to simplify cov(XY,Y)=E(XYY)-E(XY)E(Y)
=E(XY^2)-E(X)E(Y)^2.

If X and Y are independent, does it follow that X and Y^2 are independent.
yes.
If this is the case, then covariance is zero --> correlation is zero. If this isn't the case I'm really not sure how to proceed. Any help is appreciated...
 


how would you prove this?
 


rhuelu said:
how would you prove this?

what do you mean by "independent"?
 
Thread 'Use greedy vertex coloring algorithm to prove the upper bound of χ'
Hi! I am struggling with the exercise I mentioned under "Homework statement". The exercise is about a specific "greedy vertex coloring algorithm". One definition (which matches what my book uses) can be found here: https://people.cs.uchicago.edu/~laci/HANDOUTS/greedycoloring.pdf Here is also a screenshot of the relevant parts of the linked PDF, i.e. the def. of the algorithm: Sadly I don't have much to show as far as a solution attempt goes, as I am stuck on how to proceed. I thought...
Back
Top