Correspondence theorem for rings

  • Thread starter Thread starter sleventh
  • Start date Start date
  • Tags Tags
    Rings Theorem
sleventh
Messages
61
Reaction score
0
Hello,

"What does the correspondence theorem tell us about ideals in Z[x] that contain x^{2} + 1?

My thinking is that since Z[x]/(x^{2} + 1) is surjective map and its kernel is principle and generated by x^{2} + 1 since x^{2} + 1 is irreducible. This implies ideals that contain x^{2} + 1 are principle and isomorphic to C.

I'm not sure if (a) my reasoning is right and (b) what answer this question is trying to get from us.

Thank you for your help
 
Physics news on Phys.org
What you said makes very little sense. I would go back and make sure I understood the definitions of "ideal", "quotient ring" and "homomorphism" and then I would try to understand what the correspondence theorem says.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top