Cosets: difference between these two statements

  • Thread starter Thread starter ZZ Specs
  • Start date Start date
  • Tags Tags
    Cosets Difference
ZZ Specs
Messages
16
Reaction score
0
Hi all,

Suppose H is a subgroup of G. For g in G, define fg : G/H > G/H by fg (aH) = gaH for a in G, where G/H is the set of left cosets of H in G.

What is the difference between these two statements:

1) for a given aH in G/H, the set {g in G : fg(aH) = aH }

2) set {g in G : fg = the identity permutation in G/H}

The identity permutation, in this case, meaning fg(aH) = gaH = aH for all cosets aH

I know that in part 1, a is given and so we can use a to find the solution set of g, but I struggle to work with part 2 without any concrete information about such an a.
 
Physics news on Phys.org
In (2) you demand ##f_g(aH) = aH## for all ##a##. So it is the intersection of sets in (1).
 
  • Like
Likes 1 person
Oh of course. Wow, I didn't see that. So the solution set could be considered:

Assuming a_i in G for all i in the index set I,
{g in G : g lies in the intersection ∏i in I {g = a_i h a_i-1 for some h in H} }

Not sure if ∏ is the best symbol to represent intersection, but for now let's go with it.

Thanks for the reply!
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...

Similar threads

Replies
13
Views
574
Replies
2
Views
2K
Replies
1
Views
2K
Replies
5
Views
2K
Replies
3
Views
439
Replies
2
Views
2K
Replies
4
Views
2K
Back
Top