Could someone explain this solution please?

  • Thread starter Thread starter mewmew
  • Start date Start date
  • Tags Tags
    Explain
mewmew
Messages
113
Reaction score
0
http://img478.imageshack.us/img478/5606/part1bd8.jpg
http://img183.imageshack.us/img183/686/part2yu0.jpg

We got this in class from a TA and the professor is in China and not able to answer questions. I am confused by where the probability,P(N), comes from in part a. It looks like a multiplicity multiplied by some other stuff but I don't understand it at all. I haven't had any probability/statistics but I assume it's pretty basic. If anyone could help me understand how this probability comes about it would be much appreciated. Thanks
 
Last edited by a moderator:
Physics news on Phys.org
p=V/V0 is the probability that one molecule be in the volume V. q=1-p is the probablity that it be somwhere else. This expression of q comes from the fact that since the particle must be somewhere we must have p+q=1.

Choose N particles among N0. The probability that these N be in V and that the rest of them are NOT in V is p^Nq^{N_0-N}. In general, the probability that exactly N particles be in V and the rest not in V is p^Nq^{N_0-N} summed over as many ways there are to choose which N particles among N0 are going to be in V. And you probably at least know some basic probability results, among which that the number of ways to chose N amongst N0 is \binom{N_0}{N}=\frac{N_0!}{N!(N_0-N)!}

So we have the result.
 
Thanks, that makes it much clearer.
 
Hello everyone, I’m considering a point charge q that oscillates harmonically about the origin along the z-axis, e.g. $$z_{q}(t)= A\sin(wt)$$ In a strongly simplified / quasi-instantaneous approximation I ignore retardation and take the electric field at the position ##r=(x,y,z)## simply to be the “Coulomb field at the charge’s instantaneous position”: $$E(r,t)=\frac{q}{4\pi\varepsilon_{0}}\frac{r-r_{q}(t)}{||r-r_{q}(t)||^{3}}$$ with $$r_{q}(t)=(0,0,z_{q}(t))$$ (I’m aware this isn’t...
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
Back
Top