Could Time Dilation be Caused by Increased Clock Energy?

D.Hayward
Messages
5
Reaction score
0
Im definitely not an expert in this field but i have a question. From what I've picked up time dilation can be observed when a clock has a velocity or moves away from the centre of Earth and it slows/speeds up. In both these cases the clock has more energy, be it potential or kinetic. Could this increase in energy cause the atomic clocks to speed up somehow? I know the increase in energy is small but so is the time dilation. This could be very wrong as i don't quite understand how these clocks work (a semi-simple explanation would be nice), but i feel like it would make sense if they speed up when they had more energy. I am probably wrong but i just want to know why.
 
Physics news on Phys.org
I think you are suggesting that instead of time dilation, we're seeing errors on clocks due to motion, right? Well:

1. Your kinetic energy is always zero in your reference frame. So to you, there is no difference between being in motion and being stationary (or, rather, you are always stationary to yourself). So there can be no clock-specific effect of motion. If there were, we'd notice such effects in other phenomena when in motion (such as not being able to play catch on a moving train.
2. The most accurate clocks are not mechanical.
 
Clocks traveling fast usually tick slower actually. Some short lived particles can be seen for far longer than the normal lifetime of the particle when they are going fast through a particle accelerator. This can be explained by time dilation. So it is not just clocks but anything that moves in space also moves in time.. However small that might be.

In a clock you count a recurring phenomena like the swinging of a pendulum or the oscillations of something that happens periodically. If that oscillation is stable then you can call each oscillation one unit of time or a number of oscillations a unit of time. In an atomic clock the frequency is usually set by a transition between hyperfine states. In cesium this is around 9 ghz and this defines our second. This frequency is in the microwave region of the spectrum.
 
thanks guys that clears it up.
 
OK, so this has bugged me for a while about the equivalence principle and the black hole information paradox. If black holes "evaporate" via Hawking radiation, then they cannot exist forever. So, from my external perspective, watching the person fall in, they slow down, freeze, and redshift to "nothing," but never cross the event horizon. Does the equivalence principle say my perspective is valid? If it does, is it possible that that person really never crossed the event horizon? The...
ASSUMPTIONS 1. Two identical clocks A and B in the same inertial frame are stationary relative to each other a fixed distance L apart. Time passes at the same rate for both. 2. Both clocks are able to send/receive light signals and to write/read the send/receive times into signals. 3. The speed of light is anisotropic. METHOD 1. At time t[A1] and time t[B1], clock A sends a light signal to clock B. The clock B time is unknown to A. 2. Clock B receives the signal from A at time t[B2] and...
In this video I can see a person walking around lines of curvature on a sphere with an arrow strapped to his waist. His task is to keep the arrow pointed in the same direction How does he do this ? Does he use a reference point like the stars? (that only move very slowly) If that is how he keeps the arrow pointing in the same direction, is that equivalent to saying that he orients the arrow wrt the 3d space that the sphere is embedded in? So ,although one refers to intrinsic curvature...
Back
Top