Counting Cosets: Clarifying Right & Left Cosets

  • Context: MHB 
  • Thread starter Thread starter onie mti
  • Start date Start date
  • Tags Tags
    Cosets Counting
Click For Summary
SUMMARY

This discussion clarifies the concepts of right and left cosets within group theory, specifically using the symmetric group \( S_3 \) and a subgroup \( H = \{e, b\} \). The left cosets identified are \( H, aH, a^2H \), while the right cosets are \( H, Ha, Ha^2 \). The analysis reveals that while some cosets overlap, they are distinct sets, leading to complications in defining the product of cosets, as demonstrated with the set \( (Ha)(Hb) \) yielding four elements instead of the expected two.

PREREQUISITES
  • Understanding of group theory concepts, particularly subgroups.
  • Familiarity with the notation and operations of symmetric groups, specifically \( S_3 \).
  • Knowledge of coset definitions and properties in abstract algebra.
  • Ability to perform group operations and understand element multiplication in groups.
NEXT STEPS
  • Study the properties of symmetric groups, focusing on \( S_3 \) and its subgroups.
  • Learn about the Lagrange's theorem and its implications for cosets and subgroup orders.
  • Explore the concept of normal subgroups and their relationship with cosets.
  • Investigate the implications of coset multiplication and the structure of quotient groups.
USEFUL FOR

Students of abstract algebra, mathematicians specializing in group theory, and anyone seeking to deepen their understanding of cosets and their applications in mathematical structures.

onie mti
Messages
42
Reaction score
0
i am reading a chapter on counting cosets and I am not sure i fully understand the theory behind right and left cosets. can i please be given clear descriptions perhaps with examples.
 
Physics news on Phys.org
Re: counting cosets

onie mti said:
i am reading a chapter on counting cosets and I am not sure i fully understand the theory behind right and left cosets. can i please be given clear descriptions perhaps with examples.

You should post what you are specifically having difficulties with. Maybe give a problem which you can't solve.
 
Re: counting cosets

Fermat said:
You should post what you are specifically having difficulties with. Maybe give a problem which you can't solve.

i am given that H is a subgp of G, list the coset of H, for each coset list the elements of the coset

G=s_3, H= {epsilon, beta, alpha}
 
Re: counting cosets

onie mti said:
i am given that H is a subgp of G, list the coset of H, for each coset list the elements of the coset

G=s_3, H= {epsilon, beta, alpha}

I'm not sure on your epsilon, beta, alpha notation. $S_{3}$ is the set of permutations of the vector (1,2,3).
 
Let's pick a specific group, so we can be definite about this. To make things easier, we'll pick a rather small group.

Specifically, let:

$G = \{e,a,a^2,b,ab,a^2b\}$ where:

$a^3 = b^2 = e$, and the multiplication is given by the rule:

$ba = a^2b$.

Now we need to pick a subgroup, so let $H$ be the subgroup:

$H = \{e,b\}$.

Let's look at the left cosets first:

$eH = H = \{e,b\}$.
$aH = \{a,ab\}$
$a^2H = \{a^2,a^2b\}$
$bH = \{b,e\} = H$
$abH = \{ab,a\} = aH$
$a^2bH = \{a^2b,a^2\} = a^2H$

so we have 3 different (distinct) left cosets: $H,aH,a^2H$.

Now, let's look at the right cosets:

$He = H = \{e,b\}$
$Ha = \{a,ba\} = \{a,a^2b\}$ (see above)
$Ha^2 = \{a^2,ba^2\} = \{a^2,ab\}$

(because $ba^2 = (ba)a = (a^2b)a = a^2(ba) = a^2(a^2b) = a^4b = (a^3)(ab) = ab$).

$Hb = \{b,e\} = H$
$Hab = \{ab,bab\} = \{ab,a^2\} = Ha^2$
$Ha^2b = \{a^2b,ba^2b\} = \{a^2b,a\} = Ha$

Again, we have three distinct right cosets, as well: $H,Ha,Ha^2$.

But notice these are DIFFERENT sets than the left cosets, for while:

$eH = H = He$
$bH = H = Hb$

we have:

$aH = \{a,ab\}$ which has $ab$ as a member, whereas:

$Ha = \{a,a^2b\}$, which does not have $ab$ as a member.

Now this is bad news if we were planning on trying to define:

$(Ha)(Hb) = Hab$.

Let's look at what the set $(Ha)(Hb) = \{xy: x\in Ha,y \in Hb\}$ actually works out to be. We have 4 possible products:

$ae,ab,(a^2b)(e),(a^2b)(b)$, and working out what these are gives us:

$ae = a$
$ab = ab$
$a^2b = a^2b$
$(a^2b)(b) = a^2$

so $(Ha)(Hb) = \{a,a^2,ab,a^2b\}$ and this isn't even ANY coset of $H$ (all the cosets of $H$ have 2 elements, the same number of elements $H$ has, but this product set has FOUR elements).
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
646
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 13 ·
Replies
13
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 9 ·
Replies
9
Views
7K
  • · Replies 2 ·
Replies
2
Views
1K