The discussion focuses on calculating the cross product of two vectors A and B, both with magnitude M, forming a 30-degree angle. The cross product formula involves the magnitudes of the vectors and the sine of the angle between them. For the given angle, the calculation leads to the result of (M^2) * sin(30°), which simplifies to (M^2)/2. The importance of understanding the relationship between vector orientation and the resulting cross product is emphasized. Ultimately, the cross product for the specified vectors is confirmed to be (M^2)/2.