B Curiosity on this infinite product

Ssnow
Science Advisor
Messages
573
Reaction score
182
TL;DR Summary
Curiosity question on the infinite product ##2\cdot 2\cdot 2\cdots ##
Let us consider the infinite products ## p_{n}\,=\, 2\cdot 2\cdot 2 \cdot 2 \cdots 2 \,=\, 2^n## with ##n=1,\ldots ## . Clearly ##p_{n}\rightarrow +\infty## as ##n\rightarrow +\infty##. But if I put the infinity case ## 2\cdot 2\cdot 2 \cdot 2 \cdots \,=\, x## I have ##2\cdot x =x ## so ##x=0##. It is obvious I cannot put ##x=2\cdot 2\cdot 2 \cdot 2 \cdots ## and to try to seach the limit because the product diverges but has this "strange" algebraically formal result a conceptual reason to be (for example it is linked to the way to do the products ?) or it is only wrong and stop here ?
Thank you,
Ssnow
 
Mathematics news on Phys.org
Ssnow said:
Summary:: Curiosity question on the infinite product ##2\cdot 2\cdot 2\cdots ##

Let us consider the infinite products ## p_{n}\,=\, 2\cdot 2\cdot 2 \cdot 2 \cdots 2 \,=\, 2^n## with ##n=1,\ldots ## . Clearly ##p_{n}\rightarrow +\infty## as ##n\rightarrow +\infty##. But if I put the infinity case ## 2\cdot 2\cdot 2 \cdot 2 \cdots \,=\, x## I have ##2\cdot x =x ## so ##x=0##.
Or ##x=\infty##. If you rule out ##\infty## here, then you are biasing the result.
 
@FactChecker thanks, sure ##x=0 \vee x=\infty##. I ask for the absurd solution ##x=0## ...
Ssnow
 
This is a pretty classic thing where you can create fake math. The real issue is that you started off by assuming a limit exists. If there is a limit and it is L (L is a real number), then 2L=L so L=0. But this assumes the limit exists to begin with, which obviously it does not.

You can get more obvious contradictions. 1+1+1+..., If it has a limit of L then 1+L= L so 1=0.
 
@Office_Shredder I think ##1+L=L## imply that ##0L=-1## that is impossible!
In any case from something of false you can deduce everything ... :biggrin:
Thank you!
Ssnow
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Back
Top