Challenge Math Challenge - June 2021

Click For Summary
The discussion centers around various mathematical challenges, including topics such as Lie algebras, Hölder continuity, and stochastic processes. Key problems involve proving properties of functions, equations of state for gases, and investigating the structure of permutation groups. Participants share solutions and critiques, with some providing detailed proofs and others seeking clarification on specific points. The thread emphasizes collaborative problem-solving and the verification of mathematical reasoning. Overall, the discussion showcases a rich exchange of ideas among high school students tackling advanced mathematical concepts.
  • #51
kshitij said:
Hey @julian, Thanks for your reply, but I still have the same question,

you said that,
\begin{align*}
\frac{\binom{2n+1}{n}}{2^{2n+1}} < \frac{1}{\sqrt{2n+3}} \qquad (*)
\end{align*}
is correct
Hi @kshitij. I'm preoccupied at the moment so I'll just address a couple of points.

I didn't say it was correct. I was saying that this condition:

\begin{align*}
\frac{\binom{2n+2}{n+1}}{2^{2n+2}} < \frac{1}{\sqrt{2n+3}} \qquad (*)
\end{align*}

is equivalent to this condition:

\begin{align*}
\frac{\binom{2n+1}{n}}{2^{2n+1}} < \frac{1}{\sqrt{2n+3}}
\end{align*}

which follows from the fact that

\begin{align*}
\frac{\binom{2n+2}{n+1}}{2^{2n+2}} = \frac{\binom{2n+1}{n}}{2^{2n+1}}
\end{align*}

Sorry, I'm tired at the moment. You do understand that you are supposed to be proving that ##(*)## is true - yeah?
 
Last edited:
Physics news on Phys.org
  • #52
kshitij said:
Even in your solution, I cannot think how to work backwards from,
\begin{align*}

\frac{1}{2} \cdot \frac{2n+1}{n+1} < \sqrt{\frac{2n+1}{2n+3}}

\end{align*}
to get,
\begin{align*}

\frac{\binom{2n+1}{n}}{2^{2n+1}} < \frac{1}{\sqrt{2n+3}}

\end{align*}
So you were assuming that

\begin{align*}
\frac{\binom{2n}{n}}{2^{2n}} < \frac{1}{\sqrt{2n+1}} \qquad (*)
\end{align*}

holds and you wanted to show that it follows that

\begin{align*}
\frac{\binom{2n+1}{n}}{2^{2n+1}} < \frac{1}{\sqrt{2n+3}} \qquad (**)
\end{align*}

is true.

We proved that:

\begin{align*}
\frac{1}{2} \cdot \frac{2n+1}{n+1} < \sqrt{\frac{2n+1}{2n+3}}
\end{align*}

We rewrite this as

\begin{align*}
\dfrac{\frac{1}{2} \cdot \frac{2n+1}{n+1} }{ \sqrt{\frac{2n+1}{2n+3}} } < 1
\end{align*}

and use it in our assumption ##(*)## to obtain:

\begin{align*}
\dfrac{\frac{1}{2} \cdot \frac{2n+1}{n+1} }{ \sqrt{\frac{2n+1}{2n+3}} } \cdot \frac{\binom{2n}{n}}{2^{2n}} < \frac{1}{\sqrt{2n+1}}
\end{align*}

We rewrite this as:

\begin{align*}
\left( \frac{1}{2} \cdot \frac{2n+1}{n+1} \right) \cdot\frac{\binom{2n}{n}}{2^{2n}} < \sqrt{\frac{2n+1}{2n+3}} \cdot \frac{1}{\sqrt{2n+1}}
\end{align*}

which is the same as

\begin{align*}
\frac{\binom{2n+1}{n}}{2^{2n+1}} < \frac{1}{\sqrt{2n+3}}
\end{align*}

i.e. we have proven that ##(**)## holds.
 
  • Like
Likes kshitij
  • #53
julian said:
Hi @kshitij. I'm preoccupied at the moment so I'll just address a couple of points.

I didn't say it was correct. I was saying that this condition:

\begin{align*}
\frac{\binom{2n+2}{n+1}}{2^{2n+2}} < \frac{1}{\sqrt{2n+3}} \qquad (*)
\end{align*}

is equivalent to this condition:

\begin{align*}
\frac{\binom{2n+1}{n}}{2^{2n+1}} < \frac{1}{\sqrt{2n+3}}
\end{align*}

which follows from the fact that

\begin{align*}
\frac{\binom{2n+2}{n+1}}{2^{2n+2}} = \frac{\binom{2n+1}{n}}{2^{2n+1}}
\end{align*}

Sorry, I'm tired at the moment. You do understand that you are supposed to be proving that ##(*)## is true - yeah?
I did realize my mistake, thank you for your help and also for showing how to work backwards from ##\frac{\binom{2n}{n}}{2^{2n}} < \frac{1}{\sqrt{2n+1}} ## to ##
\frac{\binom{2n+1}{n}}{2^{2n+1}} < \frac{1}{\sqrt{2n+3}}##
 
  • Like
Likes julian
  • #54
I want to explicitly say thank you to @Office_Shredder for managing this month's Challenge thread. It was a great relief to have a break while he bothered incoming answers. Thanks a lot!
 
  • #55
Problem #5:

Question (a): Let ##\sigma \in \text{Aut} (S_n)## be an automorphism of the symmetric group ##S_n## ##(n \geq 4)## such that ##\sigma## sends transpositions to transpositions, then prove that ##\sigma## is an inner automorphism.

Question (b): Determine the inner automorphism groups of (i) the symmetric groups and (ii) the alternating groups for ##n \geq 4##.

Answer (a):

The transpositions ##(1,k)## are a generating set for ##S_n## for ##k = 2,3, \dots , n##. We have that ##\sigma (1,k) = (a_k , b_k)## for ##k = 2,3, \dots , n##, where ##a_k \not= b_k## and where ##a_k, b_k \in \{ 1,2, \dots , n \}##. As ##(1,2)## and ##(1,3)## don't commute, their images ##(a_2,b_2)## and ##(a_3,b_3)## don't commute. As such their intersection ##\{ a_2 , b_2 \} \cap \{ a_3 , b_3 \}## is a single number. WOLG we assume that ##a_2 = a_3 = a##.

We prove that ##a \in \{ a_k , b_k \}## for ##k >3##. Assume otherwise, that is assume that for some ##k > 3## we have that ##a_k \not= a \not= b_k##. As ##(1,k)## does not commute with ##(1,2)## we must have that ##b_2 \in \{ a_k , b_k \}##. Similarly, ##b_3 \in \{ a_k , b_k \}## as ##(1,k)## and ##(1,3)## don't commute. Therefore, ##(a_k , b_k) = (b_2 , b_3)##. But then we would have

\begin{align*}
\sigma (2,3) = \sigma ( (1,3) (1,2) (1,3)) = (a , b_3) (a , b_2) (a , b_3) = (b_2 , b_3) = \sigma (1,k)
\end{align*}

which is in contradiction with the fact that ##\sigma## is injective.

Thus the transpositions ##(a_k , b_k)## transforms the element ##a##, and WLOG we can assume ##a_k = a## for all ##k##. All the integers ##b_k \not= a## and are all distinct. So we have that ##\sigma (1 , k) (a) = (a , b_k) (a) = b_k##, ##\sigma (1 , k) (b_k) = (a , b_k) (b_k) = a##, and ##\sigma (1 , k) (b_{k'}) = (a , b_k) (b_{k'}) = b_{k'}## for ##k' \not= k##.

Consider the element ##\tau \in S_n## defined by ##\tau (1) = a## and ##\tau (k) = b_k##. We have

\begin{align*}
\tau (1,k) \tau^{-1} (a) & = \tau (1,k) (1)
\nonumber \\
& = \tau (k)
\nonumber \\
& = b_k
\end{align*}

and

\begin{align*}
\tau (1,k) \tau^{-1} (b_k) & = \tau (1,k) (k)
\nonumber \\
& = \tau (1)
\nonumber \\
& = a
\end{align*}

and when ##k' \not= k##:

\begin{align*}
\tau (1,k) \tau^{-1} (b_{k'}) & = \tau (1,k) (k')
\nonumber \\
& = \tau (k')
\nonumber \\
& = b_{k'}
\end{align*}

Thus we have shown that ##\sigma## agrees with the inner automorphism ##\tau t \tau^{-1}## on all the generators ##t = (1,k)## of the group ##S_n## and so it is an inner automorphism of ##S_n##.

QED

Answer (b) (i):

Lemma 1: Let ##G## be a group with centre ##Z (G)##. Then ##\text{Inn} (G) \simeq G / Z (G)##.

Proof: Let ##h \in G##. An inner automorphism ##\phi_h## of ##G## is given by ##\phi_h (g) = h g h^{-1}##

Define a group homomorphism:

\begin{align*}
\varphi : G \rightarrow \text{Inn} (G)
\end{align*}

by

\begin{align*}
\varphi (h) = \phi_h .
\end{align*}

##\varphi## is clearly surjective. We identify the kernel of ##\varphi##. We have that:

\begin{align*}
h \in \text{ker} \varphi & \Longleftrightarrow \phi_h (g) = g \quad \text{for all } g \in G
\nonumber \\
& \Longleftrightarrow h g h^{-1} = g \quad \text{for all } g \in G
\nonumber \\
& \Longleftrightarrow h g = g h \quad \text{for all } g \in G
\nonumber \\
& \Longleftrightarrow h \in Z (G) .
\end{align*}

We then apply the first isomorphism theorem.

QED

The centre of ##S_n## for ##n \geq 4## is the identity permutation ##e##.

Proof: Suppose that ##\rho## is an arbitrary element of ##S_n## which is not the identity. Choose ##i## such that ##j = \rho (i) \not= i##. Because ##n \geq 4## there is ##k \not= \{ i , j \}## and let ##\tau = (j,k)##. Then:

\begin{align*}
\tau \rho \tau^{-1} (i) = \tau \rho (i) = \tau (j) = k \not= j = \rho (i)
\end{align*}

so that ##\rho## does not belong to the centre.

QED

Using this result in lemma 1 we obtain that

\begin{align*}
\text{Inn} (S_n) \simeq S_n , \qquad \text{for } n \geq 4 .
\end{align*}

Answer (b) (ii):

The centre of ##A_n## for ##n \geq 4## is the identity permutation ##e##.

Proof: Suppose that ##\rho## is an arbitrary element of ##A_n## which is not the identity. Choose ##i## such that ##j = \rho (i) \not= i##. Because ##n \geq 4## we can choose distinct ##k## and ##l## such that ##k , l \not= \{ i , j \}## and let ##\tau = (j,k,l) = (j,l) (j,k) \in A_n##. Then:

\begin{align*}
\tau \rho \tau^{-1} (i) = \tau \rho (i) = \tau (j) = k \not= j = \rho (i)
\end{align*}

so that ##\rho## does not belong to the centre.

QED

Using this result in lemma 1 we obtain that

\begin{align*}
\text{Inn} (A_n) \simeq A_n , \qquad \text{for } n \geq 4 .
\end{align*}
 
Last edited:
  • #56
Problem #8:

By definition

\begin{align*}
H (p) = 1 + \frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{p -1} = \frac{a}{b} .
\end{align*}

If we can show that:

\begin{align*}
(p - 1)! \left( 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{p - 1} \right) = k p^2
\end{align*}

where ##k## is an integer then we would have

\begin{align*}
H (p) = \frac{k p^2}{(p - 1)!} .
\end{align*}

Since none of the factors in ##(p - 1)!## divide ##p## no ##p## in the numerator can be canceled out. Thus ##p^2## would divide the numerator.

In the polynomial

\begin{align*}
g (x) = (x-1)(x-2) \cdots (x - (p - 1)) = x^{p-1} + a_1 x^{p - 2} + \cdots + a_{p -2} x + a_{p - 1} \quad (*)
\end{align*}

the term ##a_{p - 2}## is given by

\begin{align*}
a_{p -2} = - (p -1)! \left( 1 + \frac{1}{2} + \cdots + \frac{1}{p - 1} \right)
\end{align*}

If we can show that ##- a_{p - 2} = k p^2## that will solve the problem.

We have ##a_{p - 1} = (p - 1)!##.

Fermat's little theorem says that ##a^{p - 1} \equiv 1 \; (\text{mod } p)## for any integer ##a##. It follows that modulo ##p##, that ##x^{p - 1} - 1## has the roots ##p - 1## roots ##1,2, \dots , p-1##. So that:

\begin{align*}
h (x) = x^{p - 1} - 1 \equiv (x-1)(x-2) \cdots (x - (p - 1)) \; (\text{mod } p) .
\end{align*}

Note that modulo ##p##, ##h (x)## and ##g (x)## have the same roots.

Also, Wilson's theorem says that:

\begin{align*}
(p - 1)! \equiv -1 \; (\text{mod } p)
\end{align*}

Using all of the above in the polynomial ##g (x) - h (x)## we obtain

\begin{align*}
f (x) & = g (x) - h (x)
\nonumber \\
& = x^{p-1} + a_1 x^{p - 2} + \cdots + a_{p -2} x + a_{p - 1} - x^{p - 1} + 1
\nonumber \\
& \equiv a_1 x^{p - 2} + a_2 x^{p -3} + \cdots + a_{p -2} x \; (\text{mod } p)
\nonumber \\
& \equiv 0 .
\end{align*}

As this is a polynomial of degree ##p - 2## with the ##p - 1## solutions by Lagrange's theorem ##p## divides all the coefficients.

Putting ##x = p## in ##(*)## gives

\begin{align*}
(p-1)! = p^{p-1} + a_1 p^{p - 2} + a_2 p^{p -3} + \cdots + a_{p -2} p + a_{p - 1}
\end{align*}

Subtracting ##(p - 1)!## from both sides, dividing by ##p##, and then rearranging gives

\begin{align*}
- a_{p - 2} = p^{p-2} + a_1 p^{p - 3} + \cdots + a_{p - 3} p .
\end{align*}

As we are taking ##p \geq 5##, and as each of the coefficients ##a_1, a_2, \dots a_{p - 3}## is proportional to ##p## the RHS is equal to ##k p^2## where ##k## is an integer.

If ##p## were equal to 3 we couldn't say that the term ##a_1 p^{p - 3}## is proportional to ##3^2## as ##a_1 p^{p - 3} = a_1##. The result clearly doesn't apply to ##H (3)##:

\begin{align*}
H (3) = 1 + \frac{1}{2} + \frac{1}{3} = \frac{11}{6} .
\end{align*}
 
Last edited:
  • #57
This is a variation on the first proof I gave for problem #8 in the previous post. It avoids mod arithmetic and knowing theorems:

Again we solve the problem by showing that

\begin{align*}
- a_{p -2} = (p -1)! \left( 1 + \frac{1}{2} + \cdots + \frac{1}{p - 1} \right)
\end{align*}

is equal to ##k p^2## where ##k## is an integer.

First we prove that if ##p## is prime and ##0 < i < p##, then ##p | \binom{p}{i}##. We have

\begin{align*}
\binom{p}{i} = \frac{p}{i!} (p - 1) (p - 2) \cdots (p - i + 1)
\end{align*}

As none of the factors in ##i!## can divide ##p## the ##p## cannot be cancelled. Hence ##p## divides ##\binom{p}{i}##.

Consider the polynomial

\begin{align*}
f (x) = (x +1) (x + 2) \cdots (x + p - 1) = x^{p - 1} - a_1 x^{p - 2} + a_2 x^{p - 3} - \cdots - a_{p - 2} x + a_{p - 1}
\end{align*}

where the ##a_i##'s are the same as before. We will prove that the coefficients ##a_1, \dots , a_{p - 2}## are all divisible by ##p## when ##p## is an odd prime.

Proof: Note that

\begin{align*}
f (x + 1) = (x +2) (x + 3) \cdots (x + p)
\end{align*}

and so

\begin{align*}
(x + 1) f (x + 1) = f (x) (x + p)
\end{align*}

implying

\begin{align*}
p f (x) = (x + 1) f (x) - x f(x) .
\end{align*}

Hence,

\begin{align*}
& p x^{p - 1} - p a_1x^{p - 2} + p a_2 x^{p - 3} - \cdots - p a_{p - 2} x + p!
\nonumber \\
& = [(x + 1)^p - x^p] - a_1 [(x + 1)^{p - 1} - x^{p - 1}] + a_2 [(x + 1)^{p - 2} - x^{p - 2}] - \cdots -
\nonumber \\
& - a_{p - 2} [(x + 1)^2 - x^2] + [(x + 1) - x](p - 1)!
\nonumber \\
& = x^{p - 1} \binom{p}{1} + x^{p - 2} \binom{p}{2} + x^{p - 3} \binom{p}{3} + \cdots + \binom{p}{p - 1} x + 1
\nonumber \\
& + (-a_1) \left[ x^{p - 2} \binom{p - 1}{1} + x^{p - 3} \binom{p - 1}{2} + \cdots + \binom{p - 1}{p - 2} x + 1 \right]
\nonumber \\
& + a_2 \left[ x^{p - 3} \binom{p - 2}{1} + x^{p - 4} \binom{p - 2}{2} + \cdots + \binom{p - 2}{p - 3} x + 1 \right]
\nonumber \\
& \vdots
\nonumber \\
& +(-a_{p - 2}) \left[ x \binom{2}{1} + 1 \right]
\nonumber \\
& + (p - 1)!
\end{align*}

By equating coefficients if of ##x^{p - 2} , x^{p - 3} , \cdots , x## we obtain:

\begin{align*}
p (- a_1) & = \binom{p}{2} + \binom{p - 1}{1} (-a_1)
\nonumber \\
p a_2 & = \binom{p}{3} + \binom{p - 1}{2} (-a_1) + \binom{p - 2}{1} a_2
\nonumber \\
& \vdots
\nonumber \\
p (-a_{p-2}) &= \binom{p}{p - 1} + \binom{p - 1}{p - 2} (-a_1) + \cdots + \binom{2}{1} (-a_{p - 2}) .
\end{align*}

From the first equation, using that ##p | \binom{p}{2}##, we have that ##p | (-a_1)##. Using this in the second equation together with ##p | \binom{p}{3}##, we have that ##p | a_2##. And so on. So we have ##p | (-a_1) , a_2 , \cdots , (-a_{p - 2})##.

QED

Putting ##x = p## into

\begin{align*}
(x-1)(x-2) \cdots (x - (p - 1)) = x^{p-1} + a_1 x^{p - 2} + \cdots + a_{p -2} x + (p - 1)!
\end{align*}

then rearranging gives

\begin{align*}
- a_{p - 2} = p^{p-2} + a_1 p^{p - 3} + \cdots + a_{p - 3} p .
\end{align*}

As we are taking ##p \geq 5##, and as each of the coefficients ##a_1, a_2, \dots a_{p - 3}## is proportional to ##p## the RHS is equal to ##k p^2## where ##k## is an integer. Solving problem #8.

QED
 
Last edited:
  • #58
Problem #6:

By definition

\begin{align*}
d = \min_{(x,y) \in C^2 , x \not= y} d (x,y)
\end{align*}

where ##d(x,y)## be the Hamming distance of ##x## and ##y##. A bound is proved by bounding the quantity

\begin{align*}
\sum_{(x,y) \in C^2 , x \not= y} d (x,y)
\end{align*}

in two different ways. On the one hand, there are ##\# C## choices for ##x## and for each such choice, there are ## \# C - 1## choices for ##y##. Since by definition ##d (x,y) \geq d## for all ##x## and ##y## (##x \not= y##), it follows that

\begin{align*}
\sum_{(x,y) \in C^2 , x \not= y} d (x,y) \geq \# C (\# C - 1) d .
\end{align*}

The other inequality is obtained by writing down all the ##\# C## codewords of ##C## into a ##\# C \times n##-matrix. Let ##n_{i , \alpha}## denote the number of times the element ##\alpha## of the alphabet (with ##q## elements) occurs in the ##i##th column. For each choice of ##\alpha## in the ##i##th column there are ##\# C - n_{i , \alpha}## elements not equal to ##\alpha## in the same column. Then

\begin{align*}
\sum_{(x,y) \in C^2 , x \not= y} d (x,y) & = \sum_{i = 1}^n \sum_{\alpha} n_{i , \alpha} (\# C - n_{i , \alpha})
\nonumber \\
& = \sum_{i = 1}^n \left( (\# C)^2 - \sum_\alpha n_{i , \alpha}^2 \right) \qquad ( \sum_{\alpha} n_{i , \alpha} = \# C)
\nonumber \\
& \leq \sum_{i = 1}^n \left( (\# C)^2 - \frac{(\# C)^2}{q} \right) \qquad ( (\# C)^2 = (\sum_{\alpha} n_{i , \alpha} \cdot 1)^2 \leq (\sum_{\alpha} n_{i , \alpha}^2) (\sum_{\alpha} 1^2) )
\nonumber \\
&= n \cdot (\# C)^2 \cdot \left( 1 - \frac{1}{q} \right) .
\end{align*}

Combining the two bounds gives

\begin{align*}
\# C (\# C - 1) d \leq (\# C)^2 \cdot n \cdot \left( \frac{q - 1}{q} \right)
\end{align*}

or

\begin{align*}
d (\# C - 1) \leq \# C \cdot n \cdot \left( \frac{q - 1}{q} \right) \qquad (*)
\end{align*}

If ##d < n \cdot \dfrac{q - 1}{q}## the bound ##(*)## can be rearranged as

\begin{align*}
\# C \leq \frac{d}{d - n \cdot \dfrac{q - 1}{q}} .
\end{align*}
 
Last edited:
  • Like
Likes fresh_42
  • #59
Problem #7:

We start with a reminder of the definition of the Cantor dust. Define ##C_1## as:

\begin{align*}
C_1 & = [0,1] - ( \frac{1}{3} , \frac{2}{3})
\nonumber \\
& = [0 , \frac{1}{3}] \cup [\frac{2}{3} , 1]
\end{align*}

Take the two intervals and split them into thirds. Then remove each of their open middle thirds to get

\begin{align*}
C_2 = [0 , \frac{1}{9}] \cup [\frac{2}{9} , \frac{1}{3}] \cup [\frac{2}{3} , \frac{7}{9}] \cup [\frac{8}{9} ,1]
\end{align*}

To get the next set ##C_3##, split each of the four intervals of ##C_2## into three equal parts and remove their open middle thirds. Continue this way for each ##k##. The Cantor dust is the intersection of all these ##C_k##:

\begin{align*}
\text{Cantor dust} = C = \cap_{k = 1}^\infty C_k .
\end{align*}

To prove it is uncountable, first we express any number ##x## in the unit interval ##[0,1]## in its tri-adic expansion

\begin{align*}
x = \sum_{k = 1}^\infty \frac{n_k}{3^k} .
\end{align*}

where ##n_k## takes the values zero, one or two. We can write the tri-adic expansion in base three notation, to obtain

\begin{align*}
x = . n_1 n_2 n_3 \dots
\end{align*}

As with the decimal expansion, the base three expansion's coefficients ##n_k## are unique, provided we always round up. Thus we will say that

\begin{align*}
.102222 \dots = .110000 \dots
\end{align*}

for example (the case ##.2222 \dots## we leave as it is).

In terms of the base three expansion

\begin{align*}
C = \{ . n_1 n_2 n_3 \dots : \text{where } n_k \text{ is equal to either zero or two} \}
\end{align*}

We prove that the Cantor dust is uncountable by contradiction. We assume there is a bijective map ##\phi : \mathbb{N} \rightarrow C## and then prove that there is a number in ##C## that not in the image of ##\phi##, contradicting that ##\phi## is surjective.

Let us list the images of our assumed bijection ##\phi : \mathbb{N} \rightarrow C##:

\begin{align*}
\phi (1) & = . a_1 a_2 a_3 \dots
\nonumber \\
\phi (2) & = . b_1 b_2 b_3 \dots
\nonumber \\
\phi (3) & = . c_1 c_2 c_3 \dots
\nonumber \\
\phi (4) & = . d_1 d_2 d_3 \dots
\nonumber \\
& \;\; \vdots
\end{align*}

Note that the ##a_i, b_j##, etc are now fixed numbers that are either ##0## or ##2##, given to us by the assumed bijection. We will construct a new number ##.n'_1 n'_2 n'_3 \dots## that cannot appear in the above list, thereby contradicting the assumption that ##\phi## is surjective. Set

\begin{align*}
n'_k = \left\{
\begin{matrix}
0, & \text{if the } kth \text{ entry of } \phi (k) \not= 0
\nonumber \\
2, & \text{if the } kth \text{ entry of } \phi (k) = 0
\end{matrix}
\right.
\end{align*}

Note that ##n'_1## is ##0## if ##a_1 = 2## and is ##2## if ##a_1 = 0##. Thus

\begin{align*}
.n'_1 n'_2 n'_3 \dots \not= . a_1 a_2 a_3 \dots = \phi (1) .
\end{align*}

Likewise, ##n'_2## is ##0## if ##b_2 = 2## and is ##2## if ##b_2 = 0## and so

\begin{align*}
.n'_1 n'_2 n'_3 \dots \not= . b_1 b_2 b_3 \dots = \phi (2) .
\end{align*}

And so on indefinitely. Since the base three expansions are unique, and since each ##n'_k## is defined so that it is not equal to the ##kth## term in ##\phi (k)##, we must have that ##.n'_1 n'_2 n'_3 \dots## is not equal to any ##\phi (k)##, meaning that ##\phi## cannot be surjective.

With Cantor dust, the portion of the object corresponding to the initial one-third of the original segment is an exact replica of the complete object, but at 1/3rd its scale. Note, moreover, that you need 2 copies of the scaled-down object to cover the object at full-scale. Hence, the Hausdorff–Besicovitch dimension is

\begin{align*}
d = \frac{\ln 2}{\ln 3} = 0.630923 \dots
\end{align*}
 
  • Like
Likes fresh_42
  • #60
julian said:
Problem #5:

Question (a): Let ##\sigma \in \text{Aut} (S_n)## be an automorphism of the symmetric group ##S_n## ##(n \geq 4)## such that ##\sigma## sends transpositions to transpositions, then prove that ##\sigma## is an inner automorphism.

Question (b): Determine the inner automorphism groups of (i) the symmetric groups and (ii) the alternating groups for ##n \geq 4##.

Answer (a):

The transpositions ##(1,k)## are a generating set for ##S_n## for ##k = 2,3, \dots , n##. We have that ##\sigma (1,k) = (a_k , b_k)## for ##k = 2,3, \dots , n##, where ##a_k \not= b_k## and where ##a_k, b_k \in \{ 1,2, \dots , n \}##. As ##(1,2)## and ##(1,3)## don't commute, their images ##(a_2,b_2)## and ##(a_3,b_3)## don't commute. As such their intersection ##\{ a_2 , b_2 \} \cap \{ a_3 , b_3 \}## is a single number. WOLG we assume that ##a_2 = a_3 = a##.

We prove that ##a \in \{ a_k , b_k \}## for ##k >3##. Assume otherwise, that is assume that for some ##k > 3## we have that ##a_k \not= a \not= b_k##. As ##(1,k)## does not commute with ##(1,2)## we must have that ##b_2 \in \{ a_k , b_k \}##. Similarly, ##b_3 \in \{ a_k , b_k \}## as ##(1,k)## and ##(1,3)## don't commute. Therefore, ##(a_k , b_k) = (b_2 , b_3)##. But then we would have

\begin{align*}
\sigma (2,3) = \sigma ( (1,3) (1,2) (1,3)) = (a , b_3) (a , b_2) (a , b_3) = (b_2 , b_3) = \sigma (1,k)
\end{align*}

which is in contradiction with the fact that ##\sigma## is injective.

Thus the transpositions ##(a_k , b_k)## transforms the element ##a##, and WLOG we can assume ##a_k = a## for all ##k##. All the integers ##b_k \not= a## and are all distinct. So we have that ##\sigma (1 , k) (a) = (a , b_k) (a) = b_k##, ##\sigma (1 , k) (b_k) = (a , b_k) (b_k) = a##, and ##\sigma (1 , k) (b_{k'}) = (a , b_k) (b_{k'}) = b_{k'}## for ##k' \not= k##.

Consider the element ##\tau \in S_n## defined by ##\tau (1) = a## and ##\tau (k) = b_k##. We have

\begin{align*}
\tau (1,k) \tau^{-1} (a) & = \tau (1,k) (1)
\nonumber \\
& = \tau (k)
\nonumber \\
& = b_k
\end{align*}

and

\begin{align*}
\tau (1,k) \tau^{-1} (b_k) & = \tau (1,k) (k)
\nonumber \\
& = \tau (1)
\nonumber \\
& = a
\end{align*}

and when ##k' \not= k##:

\begin{align*}
\tau (1,k) \tau^{-1} (b_{k'}) & = \tau (1,k) (k')
\nonumber \\
& = \tau (k')
\nonumber \\
& = b_{k'}
\end{align*}

Thus we have shown that ##\sigma## agrees with the inner automorphism ##\tau t \tau^{-1}## on all the generators ##t = (1,k)## of the group ##S_n## and so it is an inner automorphism of ##S_n##.

QED

Answer (b) (i):

Lemma 1: Let ##G## be a group with centre ##Z (G)##. Then ##\text{Inn} (G) \simeq G / Z (G)##.

Proof: Let ##h \in G##. An inner automorphism ##\phi_h## of ##G## is given by ##\phi_h (g) = h g h^{-1}##

Define a group homomorphism:

\begin{align*}
\varphi : G \rightarrow \text{Inn} (G)
\end{align*}

by

\begin{align*}
\varphi (h) = \phi_h .
\end{align*}

##\varphi## is clearly surjective. We identify the kernel of ##\varphi##. We have that:

\begin{align*}
h \in \text{ker} \varphi & \Longleftrightarrow \phi_h (g) = g \quad \text{for all } g \in G
\nonumber \\
& \Longleftrightarrow h g h^{-1} = g \quad \text{for all } g \in G
\nonumber \\
& \Longleftrightarrow h g = g h \quad \text{for all } g \in G
\nonumber \\
& \Longleftrightarrow h \in Z (G) .
\end{align*}

We then apply the first isomorphism theorem.

QED

The centre of ##S_n## for ##n \geq 4## is the identity permutation ##e##.

Proof: Suppose that ##\rho## is an arbitrary element of ##S_n## which is not the identity. Choose ##i## such that ##j = \rho (i) \not= i##. Because ##n \geq 4## there is ##k \not= \{ i , j \}## and let ##\tau = (j,k)##. Then:

\begin{align*}
\tau \rho \tau^{-1} (i) = \tau \rho (i) = \tau (j) = k \not= j = \rho (i)
\end{align*}

so that ##\rho## does not belong to the centre.

QED

Using this result in lemma 1 we obtain that

\begin{align*}
\text{Inn} (S_n) \simeq S_n , \qquad \text{for } n \geq 4 .
\end{align*}

Answer (b) (ii):

The centre of ##A_n## for ##n \geq 4## is the identity permutation ##e##.

Proof: Suppose that ##\rho## is an arbitrary element of ##A_n## which is not the identity. Choose ##i## such that ##j = \rho (i) \not= i##. Because ##n \geq 4## we can choose distinct ##k## and ##l## such that ##k , l \not= \{ i , j \}## and let ##\tau = (j,k,l) = (j,l) (j,k) \in A_n##. Then:

\begin{align*}
\tau \rho \tau^{-1} (i) = \tau \rho (i) = \tau (j) = k \not= j = \rho (i)
\end{align*}

so that ##\rho## does not belong to the centre.

QED

Using this result in lemma 1 we obtain that

\begin{align*}
\text{Inn} (A_n) \simeq A_n , \qquad \text{for } n \geq 4 .
\end{align*}
Right. You could have saved some time in the second part by observing that ##A_n## are simple for ##n>4## and ##S_n\cong A_n \rtimes \mathbb{Z}_2## which have no center. For ##n=4## the Klein four-group adds to the candidates for a center, but ##V_4## isn't Abelian.
 
  • #61
julian said:
Problem #8:

By definition

\begin{align*}
H (p) = 1 + \frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{p -1} = \frac{a}{b} .
\end{align*}

If we can show that:

\begin{align*}
(p - 1)! \left( 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{p - 1} \right) = k p^2
\end{align*}

where ##k## is an integer then we would have

\begin{align*}
H (p) = \frac{k p^2}{(p - 1)!} .
\end{align*}

Since none of the factors in ##(p - 1)!## divide ##p## no ##p## in the numerator can be canceled out. Thus ##p^2## would divide the numerator.

In the polynomial

\begin{align*}
g (x) = (x-1)(x-2) \cdots (x - (p - 1)) = x^{p-1} + a_1 x^{p - 2} + \cdots + a_{p -2} x + a_{p - 1} \quad (*)
\end{align*}

the term ##a_{p - 2}## is given by

\begin{align*}
a_{p -2} = - (p -1)! \left( 1 + \frac{1}{2} + \cdots + \frac{1}{p - 1} \right)
\end{align*}

If we can show that ##- a_{p - 2} = k p^2## that will solve the problem.

We have ##a_{p - 1} = (p - 1)!##.

Fermat's little theorem says that ##a^{p - 1} \equiv 1 \; (\text{mod } p)## for any integer ##a##. It follows that modulo ##p##, that ##x^{p - 1} - 1## has the roots ##p - 1## roots ##1,2, \dots , p-1##. So that:

\begin{align*}
h (x) = x^{p - 1} - 1 \equiv (x-1)(x-2) \cdots (x - (p - 1)) \; (\text{mod } p) .
\end{align*}

Note that modulo ##p##, ##h (x)## and ##g (x)## have the same roots.

Also, Wilson's theorem says that:

\begin{align*}
(p - 1)! \equiv -1 \; (\text{mod } p)
\end{align*}

Using all of the above in the polynomial ##g (x) - h (x)## we obtain

\begin{align*}
f (x) & = g (x) - h (x)
\nonumber \\
& = x^{p-1} + a_1 x^{p - 2} + \cdots + a_{p -2} x + a_{p - 1} - x^{p - 1} + 1
\nonumber \\
& \equiv a_1 x^{p - 2} + a_2 x^{p -3} + \cdots + a_{p -2} x \; (\text{mod } p)
\nonumber \\
& \equiv 0 .
\end{align*}

As this is a polynomial of degree ##p - 2## with the ##p - 1## solutions by Lagrange's theorem ##p## divides all the coefficients.

Putting ##x = p## in ##(*)## gives

\begin{align*}
(p-1)! = p^{p-1} + a_1 p^{p - 2} + a_2 p^{p -3} + \cdots + a_{p -2} p + a_{p - 1}
\end{align*}

Subtracting ##(p - 1)!## from both sides, dividing by ##p##, and then rearranging gives

\begin{align*}
- a_{p - 2} = p^{p-2} + a_1 p^{p - 3} + \cdots + a_{p - 3} p .
\end{align*}

As we are taking ##p \geq 5##, and as each of the coefficients ##a_1, a_2, \dots a_{p - 3}## is proportional to ##p## the RHS is equal to ##k p^2## where ##k## is an integer.

If ##p## were equal to 3 we couldn't say that the term ##a_1 p^{p - 3}## is proportional to ##3^2## as ##a_1 p^{p - 3} = a_1##. The result clearly doesn't apply to ##H (3)##:

\begin{align*}
H (3) = 1 + \frac{1}{2} + \frac{1}{3} = \frac{11}{6} .
\end{align*}
Right. The result is known as the Theorem of Wolstenholme.
 
  • #62
julian said:
Problem #6:

By definition

\begin{align*}
d = \min_{(x,y) \in C^2 , x \not= y} d (x,y)
\end{align*}

where ##d(x,y)## be the Hamming distance of ##x## and ##y##. A bound is proved by bounding the quantity

\begin{align*}
\sum_{(x,y) \in C^2 , x \not= y} d (x,y)
\end{align*}

in two different ways. On the one hand, there are ##\# C## choices for ##x## and for each such choice, there are ## \# C - 1## choices for ##y##. Since by definition ##d (x,y) \geq d## for all ##x## and ##y## (##x \not= y##), it follows that

\begin{align*}
\sum_{(x,y) \in C^2 , x \not= y} d (x,y) \geq \# C (\# C - 1) d .
\end{align*}

The other inequality is obtained by writing down all the ##\# C## codewords of ##C## into a ##\# C \times n##-matrix. Let ##n_{i , \alpha}## denote the number of times the element ##\alpha## of the alphabet (with ##q## elements) occurs in the ##i##th column. For each choice of ##\alpha## in the ##i##th column there are ##\# C - n_{i , \alpha}## elements not equal to ##\alpha## in the same column. Then

\begin{align*}
\sum_{(x,y) \in C^2 , x \not= y} d (x,y) & = \sum_{i = 1}^n \sum_{\alpha} n_{i , \alpha} (\# C - n_{i , \alpha})
\nonumber \\
& = \sum_{i = 1}^n \left( (\# C)^2 - \sum_\alpha n_{i , \alpha}^2 \right) \qquad ( \sum_{\alpha} n_{i , \alpha} = \# C)
\nonumber \\
& \leq \sum_{i = 1}^n \left( (\# C)^2 - \frac{(\# C)^2}{q} \right) \qquad ( (\# C)^2 = (\sum_{\alpha} n_{i , \alpha} \cdot 1)^2 \leq (\sum_{\alpha} n_{i , \alpha}^2) (\sum_{\alpha} 1^2) )
\nonumber \\
&= n \cdot (\# C)^2 \cdot \left( 1 - \frac{1}{q} \right) .
\end{align*}

Combining the two bounds gives

\begin{align*}
\# C (\# C - 1) d \leq (\# C)^2 \cdot n \cdot \left( \frac{q - 1}{q} \right)
\end{align*}

or

\begin{align*}
d (\# C - 1) \leq \# C \cdot n \cdot \left( \frac{q - 1}{q} \right) \qquad (*)
\end{align*}

If ##d < n \cdot \dfrac{q - 1}{q}## the bound ##(*)## can be rearranged as

\begin{align*}
\# C \leq \frac{d}{d - n \cdot \dfrac{q - 1}{q}} .
\end{align*}
The bound is called Plotkin bound.
 

Similar threads

3
Replies
100
Views
11K
3
Replies
114
Views
11K
2
Replies
61
Views
11K
2
Replies
86
Views
13K
2
Replies
67
Views
11K
Replies
42
Views
10K
2
Replies
56
Views
10K
2
Replies
61
Views
12K
2
Replies
93
Views
15K
2
Replies
60
Views
12K