Bruno Tolentino
- 96
- 0
See these equations:
<br /> \left | \frac{d \vec{f}}{d \vec{r}} \right | = \left | \frac{d(f_1,f_2)}{d(x,y)} \right | = <br /> \frac{\partial f_1 \wedge \partial f_2}{\partial x \wedge \partial y}<br /> =<br /> \left |<br /> \begin{bmatrix}<br /> \frac{\partial f_1}{\partial x} & \frac{\partial f_1}{\partial y} \\ <br /> \frac{\partial f_2}{\partial x} & \frac{\partial f_2}{\partial y} \\<br /> \end{bmatrix} <br /> \right | = \frac{\partial f_1}{\partial x}\frac{\partial f_2}{\partial y} - \frac{\partial f_1}{\partial y} \frac{\partial f_2}{\partial x} <br />
<br /> \vec{\nabla} \cdot \vec{f} = \text{tr}\left ( \frac{d \vec{f}}{d \vec{r}} \right )<br /> =<br /> \text{tr}\left ( \begin{bmatrix}<br /> \frac{\partial f_1}{\partial x} & \frac{\partial f_1}{\partial y} \\ <br /> \frac{\partial f_2}{\partial x} & \frac{\partial f_2}{\partial y} \\<br /> \end{bmatrix} \right )<br /> =<br /> \frac{\partial f_1}{\partial x} + \frac{\partial f_2}{\partial y}<br />
Realize how in the second equation I could to write the divergence in terms of df/dr. Now, what I want do is express the curl through of notation df/dr. Note that although of the first equation recall the expression of curl, is not the curl... Do you can help me with this?
<br /> \left | \frac{d \vec{f}}{d \vec{r}} \right | = \left | \frac{d(f_1,f_2)}{d(x,y)} \right | = <br /> \frac{\partial f_1 \wedge \partial f_2}{\partial x \wedge \partial y}<br /> =<br /> \left |<br /> \begin{bmatrix}<br /> \frac{\partial f_1}{\partial x} & \frac{\partial f_1}{\partial y} \\ <br /> \frac{\partial f_2}{\partial x} & \frac{\partial f_2}{\partial y} \\<br /> \end{bmatrix} <br /> \right | = \frac{\partial f_1}{\partial x}\frac{\partial f_2}{\partial y} - \frac{\partial f_1}{\partial y} \frac{\partial f_2}{\partial x} <br />
<br /> \vec{\nabla} \cdot \vec{f} = \text{tr}\left ( \frac{d \vec{f}}{d \vec{r}} \right )<br /> =<br /> \text{tr}\left ( \begin{bmatrix}<br /> \frac{\partial f_1}{\partial x} & \frac{\partial f_1}{\partial y} \\ <br /> \frac{\partial f_2}{\partial x} & \frac{\partial f_2}{\partial y} \\<br /> \end{bmatrix} \right )<br /> =<br /> \frac{\partial f_1}{\partial x} + \frac{\partial f_2}{\partial y}<br />
Realize how in the second equation I could to write the divergence in terms of df/dr. Now, what I want do is express the curl through of notation df/dr. Note that although of the first equation recall the expression of curl, is not the curl... Do you can help me with this?