Curved spacetime and imaginary coordinate

Orbb
Messages
81
Reaction score
0
In Misner, Thorne, Wheeler: "Gravitation" it is stated on that "no one has discovered a way to make an imaginary coordinate work in the general curved spacetime manifold" (p.51). Can anyone elaborate on this? Right now, I don't get why it wouldn't work and nothing more is said in the book.
 
Physics news on Phys.org
Either way, the "norm" of a four vector (ct,x,y,z) in flat spacetime is -ct^2 +x^2 +y^2 +z^2. Some textbooks (I believe Marion-Thornton does this) try to "hide" the negative sign by instead saying that the dot product of four-vectors is as in Euclidean space, but the time component is imaginary. This of course is mathematically equivalent, but hides the very idea of a metric which we will need later in GR.

Also, in flat spacetime we become complacent with the idea that a vector can be a 'displacement vector', instead of event coordinates being separate from the vector coordinates in the tangent space. Once in curved space this becomes obvious, and pushing the imaginary number onto the coordinates of the tangent space means even less then. Furthermore, the metric would start to have imaginary components, and the curvature and other things would need to be redone just to fix this kludge.

So imaginary coordinates are not useful at all (they don't "work").
I don't think they are claiming you literally cannot make changes in definitions to force such a substitution on the notation, but one would have to be acutely aware of this substitution to prevent problems ... to the point where you'd most likely be forced to just work it out normally and do the substitution afterwards (making that notation pointess).
 
JustinLevy said:
the metric would start to have imaginary components
I think that's it. The whole point of imaginary time is to get rid of the negative sign from any of the metric components. Before considering curvature you need cross-terms in the metric, which corresponds to putting \sqrt{-1} in some of the metric components if you use imaginary time. The cure is worse than the disease.
 
Okay, so assigning imaginary values to a dimension in curved spacetime is not prinicpally impossible, in the sense that it would lead to inconsistencies, but it's rather that it's just highly impracticable and therefore of no use. Hope I got that right; thank you!
 
Thread 'Can this experiment break Lorentz symmetry?'
1. The Big Idea: According to Einstein’s relativity, all motion is relative. You can’t tell if you’re moving at a constant velocity without looking outside. But what if there is a universal “rest frame” (like the old idea of the “ether”)? This experiment tries to find out by looking for tiny, directional differences in how objects move inside a sealed box. 2. How It Works: The Two-Stage Process Imagine a perfectly isolated spacecraft (our lab) moving through space at some unknown speed V...
Does the speed of light change in a gravitational field depending on whether the direction of travel is parallel to the field, or perpendicular to the field? And is it the same in both directions at each orientation? This question could be answered experimentally to some degree of accuracy. Experiment design: Place two identical clocks A and B on the circumference of a wheel at opposite ends of the diameter of length L. The wheel is positioned upright, i.e., perpendicular to the ground...
According to the General Theory of Relativity, time does not pass on a black hole, which means that processes they don't work either. As the object becomes heavier, the speed of matter falling on it for an observer on Earth will first increase, and then slow down, due to the effect of time dilation. And then it will stop altogether. As a result, we will not get a black hole, since the critical mass will not be reached. Although the object will continue to attract matter, it will not be a...
Back
Top