I Cyclic variables for Hamiltonian

AI Thread Summary
The Hamiltonian for a single particle can be expressed in various forms, indicating its dependence on generalized coordinates and canonical momenta. The discussion highlights that while the current coordinates are not cyclic, alternative coordinates could be used where one might be cyclic, particularly in the context of a 2-dimensional harmonic oscillator. The Hamiltonian exhibits symmetries that may reveal dependencies on specific coordinates. Converting to polar coordinates is suggested as a potential method to simplify the analysis. Ultimately, the exploration of coordinate systems is crucial for understanding the system's dynamics and constants of motion.
digogalvao
Messages
14
Reaction score
0
A single particle Hamitonian ##H=\frac{m\dot{x}^{2}}{2}+\frac{m\dot{y}^{2}}{2}+\frac{x^{2}+y^{2}}{2}## can be expressed as: ##H=\frac{p_{x}^{2}}{2m}+\frac{p_{y}^{2}}{2m}+\frac{x^{2}+y^{2}}{2}## or even: ##H=\frac{p_{x}^{2}}{2m}+\frac{p_{y}^{2}}{2m}+\frac{\dot{p_{x}}^{2}+\dot{p_{x}}^{2}}{4}##. Does it mean that the system has no cyclic coordinates? Since all relevant coordinates appear explicitly in ##H##. In that case, there are no constants of motion?
 
Physics news on Phys.org
First of all, the Hamiltonian is a function of the generalised coordinates and the corresponding canonical momenta (or more generally, of coordinates on phase space). You should not write the Hamiltonian as a function of derivatives of the momenta. Second, it is unclear to me what "it" that is supposed to mean that the system has no cyclic coordinates is. What property of the expression are you referring to? Clearly, none of the coordinates that you have are cyclic, but that does not mean that there are necessarily other coordinates you could use where one of them would be cyclic (as in fact there is in this case).
 
Orodruin said:
First of all, the Hamiltonian is a function of the generalised coordinates and the corresponding canonical momenta (or more generally, of coordinates on phase space). You should not write the Hamiltonian as a function of derivatives of the momenta. Second, it is unclear to me what "it" that is supposed to mean that the system has no cyclic coordinates is. What property of the expression are you referring to? Clearly, none of the coordinates that you have are cyclic, but that does not mean that there are necessarily other coordinates you could use where one of them would be cyclic (as in fact there is in this case).
What other coordinate is that?
 
digogalvao said:
What other coordinate is that?
What symmetries does the Hamiltonian have? In what coordinates would the Hamiltonian therefore not depend on one of the coordinates?
Hint: What you have is quite clearly a 2-dimensional harmonic oscillator.
 
Orodruin said:
What symmetries does the Hamiltonian have? In what coordinates would the Hamiltonian therefore not depend on one of the coordinates?
Hint: What you have is quite clearly a 2-dimensional harmonic oscillator.
Yes, the frequency is ##\frac{1}{\sqrt{m}}##. Should I put everything in polar coordinates?
 
What happens if you do?
 
Consider an extremely long and perfectly calibrated scale. A car with a mass of 1000 kg is placed on it, and the scale registers this weight accurately. Now, suppose the car begins to move, reaching very high speeds. Neglecting air resistance and rolling friction, if the car attains, for example, a velocity of 500 km/h, will the scale still indicate a weight corresponding to 1000 kg, or will the measured value decrease as a result of the motion? In a second scenario, imagine a person with a...
Scalar and vector potentials in Coulomb gauge Assume Coulomb gauge so that $$\nabla \cdot \mathbf{A}=0.\tag{1}$$ The scalar potential ##\phi## is described by Poisson's equation $$\nabla^2 \phi = -\frac{\rho}{\varepsilon_0}\tag{2}$$ which has the instantaneous general solution given by $$\phi(\mathbf{r},t)=\frac{1}{4\pi\varepsilon_0}\int \frac{\rho(\mathbf{r}',t)}{|\mathbf{r}-\mathbf{r}'|}d^3r'.\tag{3}$$ In Coulomb gauge the vector potential ##\mathbf{A}## is given by...
Thread 'Griffith, Electrodynamics, 4th Edition, Example 4.8. (First part)'
I am reading the Griffith, Electrodynamics book, 4th edition, Example 4.8 and stuck at some statements. It's little bit confused. > Example 4.8. Suppose the entire region below the plane ##z=0## in Fig. 4.28 is filled with uniform linear dielectric material of susceptibility ##\chi_e##. Calculate the force on a point charge ##q## situated a distance ##d## above the origin. Solution : The surface bound charge on the ##xy## plane is of opposite sign to ##q##, so the force will be...
Back
Top