FrogPad
- 801
- 0
We just started a section dealing with div/curl/grad in different orthogonal systems... before I get started doing problems involving these operations I wanted to make sure I am dealing with these operation correctly. Our first homework problem is as follows:
In cylindrical coordinates compute:
(1) \nabla \theta
(2) \nabla r^4
(3) \nabla \cdot i_r
(4) \nabla \times \nabla \cdot \theta
...
The definition for \nabla in cylindrical coordinate is:
\nabla f = \frac{\partial f}{\partial r} \hat r + \frac{1}{r}\frac{\partial f}{\partial \theta} \hat \theta + \frac{\partial f}{\partial z} \hat z
So...
(1) I first take \frac{\partial \theta}{\partial r} which equals 0. Next I take \frac{1}{r}\frac{\partial \theta}{\partial \theta} which equals \frac{1}{r}\hat \theta, etc...
so for problem (1)
\nabla \theta = \frac{1}{r}\hat \theta
(2)
\nabla r^4 = 4r^3 \hat r
(3)
\nabla \cdot i_r = \frac{1}{r} from the definition of div in cylindrical coordinates:
\nabla \cdot \vec F = \frac{1}{r}\frac{\partial}{\partial r} (r F_r) + ...
(4)
\nabla \cross \nabla \theta
Well from (1) I have \nabla \theta = \frac{1}{r}\hat \theta
The general definition of curl is:
\nabla \times \vec F = \frac{1}{abc} \left| \begin{array}{ccc} a\hat i_1 & b\hat i_2 & c\hat i_3 \\ \partial u & \partial v & \partial w \\ aF_1 & bF_2 & cF_3 \end{array} \right|
where: a=1, b=r, c=1, u=r, v=theta, w=z
Then plugging in the values I get:
\nabla \times \frac{1}{r}\hat \theta = \frac{1}{r} \left| \begin{array}{ccc} \hat r & r\hat \theta & \hat z \\ \partial r & \partial \theta & \partial z \\ 0 & r(\frac{1}{r}) & 0 \end{array} \right| = 0 which is equal to 0, as it should...So does everything look sound? Is my thought process here ok? I\d appreciate any help.
In cylindrical coordinates compute:
(1) \nabla \theta
(2) \nabla r^4
(3) \nabla \cdot i_r
(4) \nabla \times \nabla \cdot \theta
...
The definition for \nabla in cylindrical coordinate is:
\nabla f = \frac{\partial f}{\partial r} \hat r + \frac{1}{r}\frac{\partial f}{\partial \theta} \hat \theta + \frac{\partial f}{\partial z} \hat z
So...
(1) I first take \frac{\partial \theta}{\partial r} which equals 0. Next I take \frac{1}{r}\frac{\partial \theta}{\partial \theta} which equals \frac{1}{r}\hat \theta, etc...
so for problem (1)
\nabla \theta = \frac{1}{r}\hat \theta
(2)
\nabla r^4 = 4r^3 \hat r
(3)
\nabla \cdot i_r = \frac{1}{r} from the definition of div in cylindrical coordinates:
\nabla \cdot \vec F = \frac{1}{r}\frac{\partial}{\partial r} (r F_r) + ...
(4)
\nabla \cross \nabla \theta
Well from (1) I have \nabla \theta = \frac{1}{r}\hat \theta
The general definition of curl is:
\nabla \times \vec F = \frac{1}{abc} \left| \begin{array}{ccc} a\hat i_1 & b\hat i_2 & c\hat i_3 \\ \partial u & \partial v & \partial w \\ aF_1 & bF_2 & cF_3 \end{array} \right|
where: a=1, b=r, c=1, u=r, v=theta, w=z
Then plugging in the values I get:
\nabla \times \frac{1}{r}\hat \theta = \frac{1}{r} \left| \begin{array}{ccc} \hat r & r\hat \theta & \hat z \\ \partial r & \partial \theta & \partial z \\ 0 & r(\frac{1}{r}) & 0 \end{array} \right| = 0 which is equal to 0, as it should...So does everything look sound? Is my thought process here ok? I\d appreciate any help.
Last edited: