D'alembert solution for the semi-infinite string

  • Thread starter Thread starter bobred
  • Start date Start date
  • Tags Tags
    D'alembert String
bobred
Messages
170
Reaction score
0

Homework Statement


Find the solution of the wave equation using d'Alembert solution.

Homework Equations


u(0,t)=0[/B] and u(x,0)=0
u_t(x,0)=\frac{x^2}{1+x^3}, \, x\geq0
u_t(x,0)=0, \, x<0


The Attempt at a Solution


For a semi infinite string we have the solution
u(x,t)=\frac{1}{2}\left( a(x-ct)+a(x+ct)-a(-x-ct)-a(-x+ct) \right)+\frac{1}{2c}\left( \int^{x+ct}_{x-ct} dy\, b(y) - \int^{-x+ct}_{-x-ct} dy\, b(y) \right)
with u(x,0)=a(x)=0 so
u(x,t)=\frac{1}{2c}\left( \int^{x+ct}_{x-ct} dy\, b(y) - \int^{-x+ct}_{-x-ct} dy\, b(y) \right)
where

b(y)=<b>\frac{y^2}{1+y^3}</b>

Is this right?
 
Last edited:
Thsi is what I came up with
for x \geq ct
u(x,t)=\dfrac{1}{6c}\ln\left[\dfrac{1+(x+ct)^{3}}{1+(x-ct)^{3}}\right]
and x &lt; ct
u(x,t)=\dfrac{1}{6c}\left[\ln\left(\dfrac{1+(x+ct)^{3}}{1+(ct-x)^{3}}\right)\right]
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top