bobred
- 170
- 0
Homework Statement
Find the solution of the wave equation using d'Alembert solution.
Homework Equations
u(0,t)=0[/B] and u(x,0)=0
u_t(x,0)=\frac{x^2}{1+x^3}, \, x\geq0
u_t(x,0)=0, \, x<0
The Attempt at a Solution
For a semi infinite string we have the solution
u(x,t)=\frac{1}{2}\left( a(x-ct)+a(x+ct)-a(-x-ct)-a(-x+ct) \right)+\frac{1}{2c}\left( \int^{x+ct}_{x-ct} dy\, b(y) - \int^{-x+ct}_{-x-ct} dy\, b(y) \right)
with u(x,0)=a(x)=0 so
u(x,t)=\frac{1}{2c}\left( \int^{x+ct}_{x-ct} dy\, b(y) - \int^{-x+ct}_{-x-ct} dy\, b(y) \right)
where
b(y)=<b>\frac{y^2}{1+y^3}</b>
Is this right?
Last edited: