How Does Damping Affect the Energy of an Oscillator?

  • Thread starter Thread starter Paddyod1509
  • Start date Start date
  • Tags Tags
    Damped Oscillator
Paddyod1509
Messages
10
Reaction score
0
the damped oscillator equation:

(m)y''(t) + (v)y'(t) +(k)y(t)=0

Show that the energy of the system given by

E=(1/2)mx'² + (1/2)kx²

satisfies:

dE/dt = -mvx'


i have gone through this several time simply differentiating the expression for E wrt and i end up with

dE/dt = x'(-vx')

im at a brick wall. Am i doing something wrong? Any help is much appreciated! Thanks
 
Physics news on Phys.org
I have also assumed that y and x are interchangeable variables here, as no other information has been provided
 
I don't see anything wrong with your calculation. In fact, double check the units for your expressions - I don't think the suggested answer "##m\gamma \dot{x}##" even has the same units as ##dE/dt##.
 
Paddyod1509 said:
the damped oscillator equation:

(m)y''(t) + (v)y'(t) +(k)y(t)=0

Show that the energy of the system given by

E=(1/2)mx'² + (1/2)kx²

satisfies:

dE/dt = -mvx'

That must be wrong: it requires that E = C - mvx for some constant C, which is not the case.

i have gone through this several time simply differentiating the expression for E wrt and i end up with

dE/dt = x'(-vx')

That is the right expression for dE/dt.
 
There is the following linear Volterra equation of the second kind $$ y(x)+\int_{0}^{x} K(x-s) y(s)\,{\rm d}s = 1 $$ with kernel $$ K(x-s) = 1 - 4 \sum_{n=1}^{\infty} \dfrac{1}{\lambda_n^2} e^{-\beta \lambda_n^2 (x-s)} $$ where $y(0)=1$, $\beta>0$ and $\lambda_n$ is the $n$-th positive root of the equation $J_0(x)=0$ (here $n$ is a natural number that numbers these positive roots in the order of increasing their values), $J_0(x)$ is the Bessel function of the first kind of zero order. I...
Are there any good visualization tutorials, written or video, that show graphically how separation of variables works? I particularly have the time-independent Schrodinger Equation in mind. There are hundreds of demonstrations out there which essentially distill to copies of one another. However I am trying to visualize in my mind how this process looks graphically - for example plotting t on one axis and x on the other for f(x,t). I have seen other good visual representations of...
Back
Top