Damping Constant: Solving for b Homework

AI Thread Summary
To solve for the damping constant (b), the relevant equations must account for the decrease in amplitude due to damping. The amplitude has decreased to 80% of its original height (0.1m) after 10 oscillations, indicating that the system is experiencing damping. The initial equations provided do not incorporate damping effects, which is why they cannot be used to find b. A different approach or formula that includes damping must be utilized to arrive at the correct value, which is indicated to be 0.71 kg/s in the textbook. Understanding the relationship between amplitude reduction and damping is crucial for solving this problem effectively.
Tylerladiesman217
Messages
3
Reaction score
0

Homework Statement


I am solving for the damping constant (b). The amplitude has decreased to 80% of its original height (0.1m) after 10 oscillations. The mass is 2 kg, k is 5000 N/m, w is 50 rads/s, T = pi/25 s.

Homework Equations


x = 0.1cos(50t)
v = -5sin(50t)
a = -250cos(50t)

The Attempt at a Solution


I am not sure what equation to use, I tried
w = ((k/m)-(b^2/4(m)^2))^1/2
 
Physics news on Phys.org
Helo Tyler, :welcome:

With those equations you'll never be able to solve for the damping constant -- it doesn't appear !
Where do you think it should be sitting ?
 
BvU said:
Helo Tyler, :welcome:

With those equations you'll never be able to solve for the damping constant -- it doesn't appear !
Where do you think it should be sitting ?
I'm not sure, the answer in the back of the book is 0.71 kg/s. I think that I might need to use a different formula, but I'm not sure.
 
What I meant is that your relevant equations feature a constant amplitude: no damping.
 
BvU said:
What I meant is that your relevant equations feature a constant amplitude: no damping.
Those are the equations assuming no damping. Maybe they aren't relative...
 
Tylerladiesman217 said:
I am solving for the damping constant (b). The amplitude has decreased to 80% of its original height (0.1m) after 10 oscillations
So you can not use ##x = 0.1\cos(50t)## . The link I gave you should help you further...
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top