oneamp
- 219
- 0
Homework Statement
Consider a tank used in certain hydrodynamic experiments. After one experiment the tank contains 200 L of a dye solution with a concentration of 1 g/L. To prepare for the next experiment, the tank is to be rinsed with fresh water flowing in at a rate of 2 L / min. The well stirred solution flowing out at the same rate. Find the time that will elapse before the concentration of dye in the tank reaches 1% of its original value.
Homework Equations
This is my first differential equations word problem, so I'm trying to learn how to do them. I don't need the answer to the 1% question; just some advice on what I did wrong below.
The Attempt at a Solution
<br /> \frac{dQ}{dt} = -(\frac{2L}{min})(\frac{Q(t)}{200L}) = \frac{-1}{2} Q(t)<br />
Initial value: Q(0) = 1g/L
<br /> \frac{dQ}{dt} + \frac{1}{2} Q = 0<br />
<br /> \mu = e^{1/2*t}<br />
<br /> Q(t) = \frac{C}{e^{1/2*t}}<br />
At this point I solve for C using the initial value, and get Q(t) = 1 :( Where am I going wrong?
Thank you