- 22,800
- 14,854
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product
$$
\langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$
where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be rewritten as
$$
\langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{C \in [G]} n(C) \chi(C) \chi_0(C)^*,
$$
where ##[G]## is the set of conjugacy classes of ##G## and ##n(C)## is the number of elements in ##C##.
This should generalise to compact Lie groups with the character inner product given by
$$
\langle \chi, \chi_0\rangle = \frac{1}{V_G} \int_{g\in G} \chi(g) \chi_0(g)^* d\mu_G
$$
where ##V_G = \int_{g\in G}d\mu_G## and ##d\mu_G## is the Haar measure on ##G##. The corresponding expression on the conjugacy class level should be
$$
\langle \chi, \chi_0\rangle = \frac{1}{V_G} \int_{C\in [G]} \chi(C) \chi_0(C)^* d\mu_{[G]}
$$
with ##d\mu_{[G]}## being a measure on the conjugacy classes determined by integrating the Haar measure over each conjugacy class. Right?
My particular problem is doing this for ##SO(3)##. More explicitly, the conjugacy classes of ##SO(3)## should be parametrised by the rotation angle ##\theta## (with the conjugate elements being rotations around different axis by the same ##\theta##). I am especially looking for the function ##f(\theta)## such that
$$
\langle \chi, \chi_0\rangle = \frac{1}{V_G} \int_{0}^\pi \chi(\theta) \chi_0(\theta)^* f(\theta) d\theta.$$
Any insights?
$$
\langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$
where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be rewritten as
$$
\langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{C \in [G]} n(C) \chi(C) \chi_0(C)^*,
$$
where ##[G]## is the set of conjugacy classes of ##G## and ##n(C)## is the number of elements in ##C##.
This should generalise to compact Lie groups with the character inner product given by
$$
\langle \chi, \chi_0\rangle = \frac{1}{V_G} \int_{g\in G} \chi(g) \chi_0(g)^* d\mu_G
$$
where ##V_G = \int_{g\in G}d\mu_G## and ##d\mu_G## is the Haar measure on ##G##. The corresponding expression on the conjugacy class level should be
$$
\langle \chi, \chi_0\rangle = \frac{1}{V_G} \int_{C\in [G]} \chi(C) \chi_0(C)^* d\mu_{[G]}
$$
with ##d\mu_{[G]}## being a measure on the conjugacy classes determined by integrating the Haar measure over each conjugacy class. Right?
My particular problem is doing this for ##SO(3)##. More explicitly, the conjugacy classes of ##SO(3)## should be parametrised by the rotation angle ##\theta## (with the conjugate elements being rotations around different axis by the same ##\theta##). I am especially looking for the function ##f(\theta)## such that
$$
\langle \chi, \chi_0\rangle = \frac{1}{V_G} \int_{0}^\pi \chi(\theta) \chi_0(\theta)^* f(\theta) d\theta.$$
Any insights?