Defining Continuity at the Origin

  • Thread starter Thread starter shanepitts
  • Start date Start date
  • Tags Tags
    Function
shanepitts
Messages
84
Reaction score
1

Homework Statement


Can (a), and (b) be made continuous by suitably defining them at (0, 0)? I'm not sure if I answered it properly; especially part (b). Please help.

(a) [x^2+y^2sin(x)]/[x+y]

(b) [x^2ycos(z)]/(x^3+y^2+z^2)

Homework Equations



Taking the limit from different direction[/B]

The Attempt at a Solution


MAT2122 HW1 - Page 10.jpg
 
Physics news on Phys.org
For a) set x = 0 and approach zero in the y direction. does the limit exist?
For b) assume they mean the origin, so (0,0,0).
 
  • Like
Likes shanepitts
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top