Defining Gradient for f(x)= ||x-a||

  • Thread starter Thread starter Black Orpheus
  • Start date Start date
  • Tags Tags
    Gradient
Black Orpheus
Messages
23
Reaction score
0
One last question for tonight... If you let f: R^n ---> R (Euclidean n-space to real numbers) and f(x) = ||x-a|| for some fixed a, how would you define the gradient in terms of symbols and numbers (not words)?
 
Physics news on Phys.org
Start by writing out the definition for ||x - a||
 
forgot to add that it's for all x not equal to a
 
||x-a|| = sqrt[(xsub1 - a)^2 +...+ (xsubn - a)^2]

so gradient = (partial derivative of sqrt[(xsub1 - a)^2] , ... , partial derivative of sqrt[(xsubn - a)^2])?
 
For f(x)=\| x-a\| = \sqrt{(x_1-a_1)^2+\cdots +(x_n-a_n)^2}

we have

\nabla f(x) = \left< \frac{\partial }{\partial x_1},\ldots , \frac{\partial }{\partial x_n}\right>\cdot \sqrt{(x_1-a_1)^2+\cdots +(x_n-a_n)^2}
\left< \frac{\partial }{\partial x_1}\sqrt{(x_1-a_1)^2+\cdots +(x_n-a_n)^2},\ldots , \frac{\partial }{\partial x_n}\sqrt{(x_1-a_1)^2+\cdots +(x_n-a_n)^2}\right>
= \left< \frac{x_1-a_1 }{\sqrt{(x_1-a_1)^2+\cdots +(x_n-a_n)^2}},\ldots , \frac{x_n-a_n }{\sqrt{(x_1-a_1)^2+\cdots +(x_n-a_n)^2}}\right>
= \frac{1}{\sqrt{(x_1-a_1)^2+\cdots +(x_n-a_n)^2}}\left< x_1-a_1 ,\ldots , x_n-a_n \right>
= \frac{x-a}{\| x-a\| }

which is a unit vector in the direction of x-a.
 
Last edited:
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top