Definition of the Composition of Two Functions

Click For Summary
To define the composite function g(f(x)): A -> C meaningfully, the range of f must be a subset of the domain of g. This ensures that for every output of f, there is a corresponding input for g. The condition can be expressed as f(A) ⊆ B, where f(A) is the image of f over its domain A. Understanding the image of a function is crucial for establishing this relationship. A clear grasp of these concepts is essential for solving the problem effectively.
number0
Messages
102
Reaction score
0

Homework Statement



In general, let f: A -> T and g: B -> C. Find a condition on the domain of g (other than B = T) that results in a meaningful definition of the composite function g((f(x)): A -> C.


Homework Equations



None.


The Attempt at a Solution



I could not find a starting place for this problem.
 
Last edited:
Physics news on Phys.org
You might want to recall the definition of the image of a function.
 
Question: A clock's minute hand has length 4 and its hour hand has length 3. What is the distance between the tips at the moment when it is increasing most rapidly?(Putnam Exam Question) Answer: Making assumption that both the hands moves at constant angular velocities, the answer is ## \sqrt{7} .## But don't you think this assumption is somewhat doubtful and wrong?

Similar threads

Replies
7
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
2
Views
950
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 8 ·
Replies
8
Views
4K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K