I Demerits radial distribution functions

kenyanchemist
Messages
24
Reaction score
2
i have a question, why is the plot of r2(Ψ2p)2 not a good representation of the probability of finding an electron at a distance r from the nucleus in a 2p orbital
 
Physics news on Phys.org
Well, in spherical coordinates you have
$$\mathrm{d}^3 \vec{x} = \mathrm{d} r \mathrm{d} \vartheta \mathrm{d} \varphi r^2 \sin \vartheta.$$
The wave function squared is the probability distribution. So the probability for finding a particle described by the wave function at a distance ##r## is
$$P(r)=\int_0^{\pi} \mathrm{d} \vartheta \int_0^{2 \pi} \mathrm{d} \varphi \, r^2 \sin \vartheta |\psi(r,\vartheta,\varphi)|^2.$$
Note that sometimes one writes
$$\psi(r, \vartheta,\varphi)=\frac{1}{r} u(r,\vartheta,\varphi),$$
because this ansatz simplifies the solution of the Schrödinger equation in spherical coordinates. In terms of ##u## the factor ##r^2## cancels in the above integral.
$$P(r)=\int_0^{\pi} \mathrm{d} \vartheta \int_0^{2 \pi} \mathrm{d} \varphi \, \sin \vartheta |u(r,\vartheta,\varphi)|^2.$$
 
  • Like
Likes kenyanchemist
vanhees71 said:
Well, in spherical coordinates you have
$$\mathrm{d}^3 \vec{x} = \mathrm{d} r \mathrm{d} \vartheta \mathrm{d} \varphi r^2 \sin \vartheta.$$
The wave function squared is the probability distribution. So the probability for finding a particle described by the wave function at a distance ##r## is
$$P(r)=\int_0^{\pi} \mathrm{d} \vartheta \int_0^{2 \pi} \mathrm{d} \varphi \, r^2 \sin \vartheta |\psi(r,\vartheta,\varphi)|^2.$$
Note that sometimes one writes
$$\psi(r, \vartheta,\varphi)=\frac{1}{r} u(r,\vartheta,\varphi),$$
because this ansatz simplifies the solution of the Schrödinger equation in spherical coordinates. In terms of ##u## the factor ##r^2## cancels in the above integral.
$$P(r)=\int_0^{\pi} \mathrm{d} \vartheta \int_0^{2 \pi} \mathrm{d} \varphi \, \sin \vartheta |u(r,\vartheta,\varphi)|^2.$$
What do you mean by cancels?
I apologize, I am relatively new at quantum mechanics
 
and thanks so much... you have really helped me alot
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
If we release an electron around a positively charged sphere, the initial state of electron is a linear combination of Hydrogen-like states. According to quantum mechanics, evolution of time would not change this initial state because the potential is time independent. However, classically we expect the electron to collide with the sphere. So, it seems that the quantum and classics predict different behaviours!

Similar threads

Back
Top