DeMorgan's Laws: Infinite Unions & Intersections

  • Thread starter Thread starter ehrenfest
  • Start date Start date
  • Tags Tags
    Infinite Laws
ehrenfest
Messages
2,001
Reaction score
1

Homework Statement


Do deMorgan's laws hold for infinite unions and intersections i.e.

is X-\cap_{i=1}^{\infty}U_i = \cup_{i=1}^{\infty}(X-U_i)

?

Homework Equations


The Attempt at a Solution

 
Last edited:
Physics news on Phys.org
I'm fairly certain the proof is exactly the same as it would be for a finite number
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top