- #1

EnumaElish

Science Advisor

Homework Helper

- 2,304

- 124

[Mentors' note: split off from this thread]

Do all black holes have the same density?

Do all black holes have the same density?

Last edited by a moderator:

You are using an out of date browser. It may not display this or other websites correctly.

You should upgrade or use an alternative browser.

You should upgrade or use an alternative browser.

- B
- Thread starter EnumaElish
- Start date

- #1

EnumaElish

Science Advisor

Homework Helper

- 2,304

- 124

[Mentors' note: split off from this thread]

Do all black holes have the same density?

Do all black holes have the same density?

Last edited by a moderator:

- #2

George Jones

Staff Emeritus

Science Advisor

Gold Member

- 7,433

- 1,078

As mass increases, the density of matter necessary to form a black hole decreases. If fact, if enough stars are used, they don't even have to touch for a black hole to form. In other words the stars have to be close together, but there still can be space between them. Below, I calculate a quantity that I'll call density, but, in reality, the quantity is only suggestive of density.

Setting this "density" to the average density of the sun, about 1400 kg/m^3, gives a black hole mass of about 100 million solar masses. So, if more than 100 million or so (within an order of magnitude) sunlike stars congregate in the centre of a galaxy, they don't have to touch (initially) to form a black hole.

The following calculation is only suggestive, and it is in no way rigorous. Because of the curvature and nature of spacetime, it probably doesn't make sense to calculate the spatial volume inside the event horizon of a black hole.

Density is mass over volume, i.e.,

[tex]\rho = \frac{M}{V},[/tex]

and the volume of a spherical object of radius [itex]R[/itex] is given by [itex]4\pi R^3/3[/itex], so the density of a uniform sphere is

[tex]\rho = \frac{3M}{4\pi R^3}.[/tex]

A spherical black hole has event horizon (boundary) located at

[tex]R = \frac{2GM}{c^2},[/tex]

where [itex]G[/itex] is Newton's gravitational constant and [itex]c[/itex] is the speed of light.

Subsituting this equation into the density equation for a spherical black hole gives

[tex]\rho = \frac{3c^6}{32\pi G^3} \frac{1}{M^2}.[/tex]

The first bit is just a constant number, while the second bit shows that the "density" of a spherical black rapidly decreases as mass increases.

Inverting this equation gives

[tex]M = \frac{c^3}{4}\sqrt{\frac{3}{2\pi G^3}}\sqrt{\frac{1}{\rho}},[/tex]

and using the Sun's density for [itex]\rho[/itex] gives the result I mentioned at the top.

- #3

- 654

- 148

- #4

Nugatory

Mentor

- 13,350

- 6,288

Longer answer: Those scare-quotes are in the short answer for a reason. The volume of a black hole, and hence its density, aren't especially well defined. The first and most obvious problem is that the mass is not distributed evenly inside the black hole; as far as GR will tell us (and there's no reason to believe this particular prediction) it is concentrated in a point of zero volume at the singularity in the "center" so there's no physical significance to any density you might calculate. Second, the Schwarzschild radius is not the length of a line segment between the central singularity and the event horizon (in fact, there is no such thing) so you can't just plug it into the formula for the volume of a sphere.

Usually when someone speaks of the "density" of a black hole, they mean the ratio of the mass to the volume of a hypothetical sphere whose surface area is equal to the surface area of the event horizon. And if that's what you mean by the density, you can go with the short answer above: the bigger the black hole, the lower the density.

- #5

PAllen

Science Advisor

- 8,283

- 1,545

- #6

EnumaElish

Science Advisor

Homework Helper

- 2,304

- 124

Share:

- Replies
- 15

- Views
- 813

- Replies
- 11

- Views
- 8K