Density of states in 2 dimensional box

hideelo
Messages
88
Reaction score
15
I am trying to calculate the density of energy states in a two dimensional box. The way my professor did this is by first calculating the amount of states with their energy less than some energy e and taking its derivative with respect to e. In order to see how many energy states there are with energy less than e we are first calculating the amount of momentum states with a k vector less than some k and then translating it into the corresponding condition for energy.

There is one step in the derivation where my professor makes a jump which I do not understand, and I need some help with. I understand that for some given k vector in 2-dimensions, it has magnitude

k = √(kx2 + kx2 ) where kx = π nx/Lx and the same for y.

she then makes the jump that the amount of states with k vectors of magnitude less than some given k is

(1/4)(πk2)/(π/Lx + π/Ly)

I do not understand how she arrived at this, any help would be appreciated
 
Physics news on Phys.org
I think you may have written it down wrong. The expression needs to be dimensionless. If the + sign were a x sign that might work. The expression should represent the area of the positive quadrant of an ellipse in k space divided by the area taken up by each state.
 
Edit. That should be a circle a k space and an ellipse in n space.
 
Yep, you're right. And thanks
 
Not an expert in QM. AFAIK, Schrödinger's equation is quite different from the classical wave equation. The former is an equation for the dynamics of the state of a (quantum?) system, the latter is an equation for the dynamics of a (classical) degree of freedom. As a matter of fact, Schrödinger's equation is first order in time derivatives, while the classical wave equation is second order. But, AFAIK, Schrödinger's equation is a wave equation; only its interpretation makes it non-classical...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
Is it possible, and fruitful, to use certain conceptual and technical tools from effective field theory (coarse-graining/integrating-out, power-counting, matching, RG) to think about the relationship between the fundamental (quantum) and the emergent (classical), both to account for the quasi-autonomy of the classical level and to quantify residual quantum corrections? By “emergent,” I mean the following: after integrating out fast/irrelevant quantum degrees of freedom (high-energy modes...

Similar threads

Back
Top