Doom of Doom
- 85
- 0
Let A be a matrix and \mu be an eigenvalue of that matrix. Suppose that for some k, \tex{ker}\left(A-\mu I\right)^k=\tex{ker}\left(A-\mu I\right)^{k+1}. Then show that \tex{ker}\left(A-\mu I\right)^{k+r}=\tex{ker}\left(A-\mu I\right)^{k+r+1} for all r\geq0.