Derivation of a Simplified D'Arcy's Law Equation

  • Thread starter Thread starter SpaceDuck127
  • Start date Start date
  • Tags Tags
    Flow Water flow
Click For Summary

Homework Help Overview

The discussion revolves around the derivation of a simplified equation related to D'Arcy's Law, particularly in the context of fluid flow through porous materials and its relation to the Darcy-Weisbach equation. Participants explore the implications of combining these equations, especially concerning filtration mechanics and the behavior of fluids in different flow regimes.

Discussion Character

  • Mixed

Approaches and Questions Raised

  • Participants discuss the substitution of the Darcy-Weisbach equation into D'Arcy's Law and the simplification process that leads to a new equation. Some express confidence in the derivation based on their understanding of filtration mechanics, while others question the validity of combining these equations due to their application in different fluid flow scenarios.

Discussion Status

The discussion is ongoing, with participants offering insights and raising questions about the assumptions made in the derivation. There is a recognition of the need to clarify the context of the equations used and the conditions under which they apply, particularly regarding the nature of fluid flow through porous media.

Contextual Notes

Some participants note the potential differences in fluid behavior when transitioning from laminar to turbulent flow and the implications this has for the equations being discussed. There is also mention of the specific focus on water filtration and the change in speed of water as it interacts with porous materials.

SpaceDuck127
Messages
1
Reaction score
0
Homework Statement
Done for a research essay on physics models for water filtration, and what I am focusing on is the change in speed after water passes through a porous material
Relevant Equations
q = -k*∆p/(µ*L) Darcy’s Law (flux rate)
∆p = f(L/D)(𝜌V^2/2) Darcy-Weisbach equation
Re = ρVD/µ Reynolds Number equation
f = 64/Re Friction factor equation
By substituting the darcy-weisbach equation into darcy’s law we get
q = -kf/µL * (L/D) * (𝜌V^2/2)
This can be further simplified by substituting the equation for friction factor for laminar flow, f = 64/Re , with the equation for reynolds number, Re = ρVD/µ substituted in such that:
q = (-k/µL)(64µ/ρVD)*(L/D)(𝜌V^2/2)
Which can be simplified from crossing out variables into:
q =-32kV/D^2

Based on physics and research i've done on filtration mechanics this makes kinda perfect sense, but I haven't found any evidence of this substitution online.
 
Physics news on Phys.org
SpaceDuck127 said:
Relevant Equations: q = -k*∆p/(µ*L) Darcy’s Law (flux rate)
∆p = f(L/D)(𝜌V^2/2) Darcy-Weisbach equation
Re = ρVD/µ Reynolds Number equation
f = 64/Re Friction factor equation

By substituting the darcy-weisbach equation into darcy’s law we get
q = -kf/µL * (L/D) * (𝜌V^2/2)
This can be further simplified by substituting the equation for friction factor for laminar flow, f = 64/Re , with the equation for reynolds number, Re = ρVD/µ substituted in such that:
q = (-k/µL)(64µ/ρVD)*(L/D)(𝜌V^2/2)
Which can be simplified from crossing out variables into:
q =-32kV/D^2
Not my area but…

d’Arcy’s law is about a fluid passing through a porous material.

Reynold’s number is essentially about the transition between laminar and turbulent flow in a ‘free’ fluid.

Does it make sense to combine these when they apply to such different situations?

Beware of combining equations merely because they have some common parameters.
 
SpaceDuck127 said:
Homework Statement: Done for a research essay on physics models for water filtration, and what I am focusing on is the change in speed after water passes through a porous material
Relevant Equations: q = -k*∆p/(µ*L) Darcy’s Law (flux rate)
∆p = f(L/D)(𝜌V^2/2) Darcy-Weisbach equation
Re = ρVD/µ Reynolds Number equation
f = 64/Re Friction factor equation

By substituting the darcy-weisbach equation into darcy’s law we get
q = -kf/µL * (L/D) * (𝜌V^2/2)
This can be further simplified by substituting the equation for friction factor for laminar flow, f = 64/Re , with the equation for reynolds number, Re = ρVD/µ substituted in such that:
q = (-k/µL)(64µ/ρVD)*(L/D)(𝜌V^2/2)
Which can be simplified from crossing out variables into:
q =-32kV/D^2

Based on physics and research i've done on filtration mechanics this makes kinda perfect sense, but I haven't found any evidence of this substitution online.
What do you mean "change in speed after the water passes through a porous material"? Do you instead mean "as it is going through the porous material"?
 
Your analysis would work if you had an array of parallel pores running through your medium. Then, for each pore, you would have the Poiseulle equation: $$-\frac{dP}{dL}=\frac{128Q\mu}{\pi D^4 }=\frac{32\mu v}{D^2}$$where v is the pore velocity. The pore velocity is related to the superficial velocity q by $$q=\epsilon v$$where ##\epsilon## is the porosity. So, we have Darcy's law for such a medium being: $$-\frac{dP}{dL}=\frac{32q\mu}{\epsilon D^2}$$or $$q=-\frac{dP}{dL}\frac{\epsilon D^2}{32 \mu}$$So, the permeability for such a medium is $$k=\frac{\epsilon D^2 }{32}$$
 

Similar threads

Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 16 ·
Replies
16
Views
3K
  • · Replies 6 ·
Replies
6
Views
4K
  • · Replies 30 ·
2
Replies
30
Views
3K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
6
Views
6K
  • · Replies 8 ·
Replies
8
Views
2K