Alien8
- 77
- 1
stevendaryl said:For this model,
P_{++} = \frac{1}{\pi} \int d\phi cos^2(\alpha - \phi) cos^2(\beta - \phi) = \frac{1}{8} + \frac{1}{4}cos^2(\alpha - \beta)
P_{+-} = \frac{1}{\pi} \int d\phi cos^2(\alpha - \phi) sin^2(\beta - \phi) = \frac{1}{8} + \frac{1}{4}sin^2(\alpha - \beta)
P_{-+} = \frac{1}{\pi} \int d\phi sin^2(\alpha - \phi) cos^2(\beta - \phi) = \frac{1}{8} + \frac{1}{4}sin^2(\alpha - \beta)
P_{--} = \frac{1}{\pi} \int d\phi sin^2(\alpha - \phi) sin^2(\beta - \phi) = \frac{1}{8} + \frac{1}{4}cos^2(\alpha - \beta)
So
E(\alpha, \beta) = \frac{1}{2}(cos^2(\alpha - \beta) - sin^2(\alpha - \beta)) = \frac{1}{2} cos(2 (\alpha - \beta))
That's exactly 1/2 of the QM prediction.
Ok, I got that here: http://www.wolframalpha.com/input/?...n^2(a+−+phi)+*+cos^2(b+−+phi),++phi=0+to+2Pi+
http://www4a.wolframalpha.com/Calculate/MSP/MSP1161fh633fae46422g300001fc1f12g5d92ih4e?MSPStoreType=image/gif&s=58&w=532.&h=71. Only one question remains, the dotted curve, how does QM arrive to: cos2(a - b)?
Last edited by a moderator: