Derivation of the energy principle from Gregory Classical Mechanics textbook

AI Thread Summary
The discussion focuses on the derivation of energy conservation in Gregory's Classical Mechanics, specifically regarding the transition from a time integral of work done by external forces to a position integral involving potential energy. The participant is confused about how to relate the integral of force and velocity over time to the change in potential energy between two positions. They propose that this transition is valid since potential energy is path-independent, leading to the conclusion that integrating over time can be equated to integrating over position. The conversation confirms that the path taken does not affect the outcome, affirming that the potentials are indeed time-independent. This clarity enhances the understanding of energy conservation principles in mechanics.
zackiechan
Messages
3
Reaction score
0
I'm working through Gregory's Classical Mechanics and came across his derivation of energy conservation for a system of N particles that is unconstrained. We get to assume all the external forces are conservative, so we can write them as the gradient of a potential energy. There's a step he makes in the derivation that has me confused.

By Gregory, the total work done by all the external forces (that's the Fis ) is:

$$\sum_{i=1}^{N} \int_{t_A}^{t_B} \vec{F_i} \cdot \vec{v_i} dt = \sum_{i=1}^{N} (\phi_i(\vec{r_A}) - \phi_i(\vec{r_B})) $$

What I don't understand is how to go from the integral:

$$\int_{t_A}^{t_B} \vec{F_i} \cdot \vec{v_i} dt$$ to the potentials.

My idea is:

$$\int_{t_A}^{t_B} \vec{F_i} \cdot \vec{v_i} dt = \int_{t_A}^{t_B} -\nabla \phi_i \cdot \vec{v_i} dt = \int_{\vec{r_A}}^{\vec{r_B}} -\nabla \phi_i \cdot \vec{dr} = \phi_i(\vec{r_A}) - \phi_i(\vec{r_B})$$

My questions are :

Can we go from a time integral to a position integral without messing with the potentials? I know they are path independent, but are they time independent?

Does integrating from tA to tB do the same sum as integrating from rA to rB?
 
Physics news on Phys.org
zackiechan said:
Can we go from a time integral to a position integral without messing with the potentials? I know they are path independent, but are they time independent?
If they were not time independent you would typically induce energy into the system simply by the change in potential.

zackiechan said:
Does integrating from tA to tB do the same sum as integrating from rA to rB?
Yes. The path taken is just a particular parametrisation of a path from A to B.
 
  • Like
Likes BvU
Thank you very much for the response. I really like the logic behind the potentials being time independent!
 
For the following four books, has anyone used them in a course or for self study? Compiler Construction Principles and Practice 1st Edition by Kenneth C Louden Programming Languages Principles and Practices 3rd Edition by Kenneth C Louden, and Kenneth A Lambert Programming Languages 2nd Edition by Allen B Tucker, Robert E Noonan Concepts of Programming Languages 9th Edition by Robert W Sebesta If yes to either, can you share your opinions about your personal experience using them. I...
Hi, I have notice that Ashcroft, Mermin and Wei worked at a revised edition of the original solid state physics book (here). The book, however, seems to be never available. I have also read that the reason is related to some disputes related to copyright. Do you have any further information about it? Did you have the opportunity to get your hands on this revised edition? I am really curious about it, also considering that I am planning to buy the book in the near future... Thanks!
Back
Top