username12345
- 47
- 0
I am unclear about an example of calculating a derivative in a book I am reading. I think the problem is my algebra.
<br /> \begin{flalign*}<br /> \mathrm{if} & & y & = & & x^n \\<br /> \mathrm{then} & & \frac{dy}{dx} & = & & nx^{n-1} \\<br /> \mathrm{so if} & & y & = & & x^2 - x - 2 \\<br /> \mathrm{then} & & \frac{dy}{dx} & = & & 2x - 1 \\<br /> \end{flalign*}<br />
I can't find how it ended up as 2x - 1. Here's is my attempt:
<br /> \begin{flalign*}<br /> y & = & & x^2 - x - 2 \\<br /> \frac{dy}{dx} & = & & nx^{n-1} \\<br /> & = & & 2x^{2-1} - 1x^{1-1} - 1(2)^{1-1} \\<br /> & = & & 2x - 1 - 1 \\<br /> & = & & 2x - 2 \\<br /> \end{flalign*}<br />
How do I get to the same result of 2x - 1 ?
<br /> \begin{flalign*}<br /> \mathrm{if} & & y & = & & x^n \\<br /> \mathrm{then} & & \frac{dy}{dx} & = & & nx^{n-1} \\<br /> \mathrm{so if} & & y & = & & x^2 - x - 2 \\<br /> \mathrm{then} & & \frac{dy}{dx} & = & & 2x - 1 \\<br /> \end{flalign*}<br />
I can't find how it ended up as 2x - 1. Here's is my attempt:
<br /> \begin{flalign*}<br /> y & = & & x^2 - x - 2 \\<br /> \frac{dy}{dx} & = & & nx^{n-1} \\<br /> & = & & 2x^{2-1} - 1x^{1-1} - 1(2)^{1-1} \\<br /> & = & & 2x - 1 - 1 \\<br /> & = & & 2x - 2 \\<br /> \end{flalign*}<br />
How do I get to the same result of 2x - 1 ?