What is the derivative of a function raised to another function?

fermio
Messages
38
Reaction score
0

Homework Statement



y'=((3x^2+2x+5)^{8x^3+2x^2 +4})'=?

Homework Equations





The Attempt at a Solution



((3x^2+2x+5)^{8x^3+2x^2 +4})'=(8x^3+2x^2+4)(3x^2+2x+5)^{8x^3+2x^2 +4-1}(24x^2+4x)(6x+2)
 
Physics news on Phys.org
The power rule only holds when the exponent is a constant (not a function of x).
 
Last edited:
The function f(x)=g(x)^{h(x)} can be written

f(x)=e^{\ln g(x)^{h(x)}}=e^{h(x)\,\ln g(x)}

Now you can take the derivative, i.e.

f'(x)=e^{h(x)\,\ln g(x)}\left(h(x)\,\ln g(x)\right)'\Rightarrow f'(x)=f(x)\left(h(x)\,\ln g(x)\right)'
 
((3x^2+2x+5)^{8x^3+2x^2 +4})'=(3x^2+2x+5)^{8x^3+2x^2 +4}((24x^2+4x)\ln(3x^2+2x+5)+(8x^3+2x^2 +4)\frac{6x+2}{3x^2+2x+5})
 
You missed a parethensis after (3x^2+2x+5)^{8x^3+2x^2 +4}, but you are correct :smile:
 
Rainbow Child said:
The function f(x)=g(x)^{h(x)} can be written

f(x)=e^{\ln g(x)^{h(x)}}=e^{h(x)\,\ln g(x)}

Now you can take the derivative, i.e.

f'(x)=e^{h(x)\,\ln g(x)}\left(h(x)\,\ln g(x)\right)'\Rightarrow f'(x)=f(x)\left(h(x)\,\ln g(x)\right)'

Or, much the same thing, write ln(f(x))= h(x)ln(g(x)) and use the product and chain rules: (1/f)f '= h'(x) ln(g(x))+ (h(x)/g(x)) g'(x) so f '= [h'(x) ln(g(x)+(h(x)/g(x))g'(x)]f(x).
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top