Derivative of metric tensor with respect to itself

jdstokes
Messages
520
Reaction score
1
Is there an identity for \frac{\partial g^{\mu\nu}}{\partial g_{\lambda\sigma}}? Note raised and lowered indices.
 
Physics news on Phys.org
And it turns out there is!

\frac{\partial g^{\mu\nu}}{\partial g_{\lambda\sigma}} = \frac{\partial}{\partial g_{\lambda\sigma}} (g_{\alpha\beta}g^{\alpha\mu}g^{\beta\nu}) = \delta^\lambda_\alpha\delta^\sigma_\beta g^{\alpha\mu} g^{\beta\nu} + g_{\alpha\beta}\frac{g^{\alpha\mu}}{g_{\lambda\sigma}}g^{\beta\nu} + g_{\alpha\beta}g^{\alpha\mu}\frac{\partial g^{\beta\nu}}{g_{\lambda\sigma}}\implies

\frac{\parital g^{\mu\nu}}{g_{\lambda\sigma}} = - g^{\lambda\mu}g^{\sigma\nu}.
 
Neat! I'm going to transcribe your LaTeX with the partial deriv. signs put in ('cos my brain can't read it otherwise) and ask you about the final step:

<br /> \frac{\partial g^{\mu\nu}}{\partial g_{\lambda\sigma}} =<br /> \frac{\partial}{\partial g_{\lambda\sigma}} (g_{\alpha\beta}g^{\alpha\mu}g^{\beta\nu}) =<br /> \delta^\lambda_\alpha\delta^\sigma_\beta g^{\alpha\mu} g^{\beta\nu} +<br /> g_{\alpha\beta}\frac{\partial g^{\alpha\mu}}{\partial g_{\lambda\sigma}}g^{\beta\nu} +<br /> g_{\alpha\beta}g^{\alpha\mu}\frac{\partial g^{\beta\nu}}{\partial g_{\lambda\sigma}}\implies<br /> \frac{\partial g^{\mu\nu}}{\partial g_{\lambda\sigma}} = - g^{\lambda\mu}g^{\sigma\nu} <br />

So, how did you get to the final step? I ran into (something probably stupid) a problem trying to bring to factor out the derivative term.
 
Last edited:
I'm somewhat suspicious of this for two reasons.

1. The components of the metric tensor are not independent variables
2. I don't think it makes sense to ask for derivatives w.r.t. components of the metric tensor

Anyways, its probably better to start with

<br /> \frac{\partial g_{ab}}{\partial g_{cd}} =<br /> \frac{\partial (g_{ae} g_{bf} g^{ef})}{\partial g_{cd}}<br />
 
Last edited:
masudr said:
Neat! I'm going to transcribe your LaTeX with the partial deriv. signs put in ('cos my brain can't read it otherwise) and ask you about the final step:

<br /> \frac{\partial g^{\mu\nu}}{\partial g_{\lambda\sigma}} =<br /> \frac{\partial}{\partial g_{\lambda\sigma}} (g_{\alpha\beta}g^{\alpha\mu}g^{\beta\nu}) =<br /> \delta^\lambda_\alpha\delta^\sigma_\beta g^{\alpha\mu} g^{\beta\nu} +<br /> g_{\alpha\beta}\frac{\partial g^{\alpha\mu}}{\partial g_{\lambda\sigma}}g^{\beta\nu} +<br /> g_{\alpha\beta}g^{\alpha\mu}\frac{\partial g^{\beta\nu}}{\partial g_{\lambda\sigma}}\implies<br /> \frac{\partial g^{\mu\nu}}{\partial g_{\lambda\sigma}} = - g^{\lambda\mu}g^{\sigma\nu} <br />

So, how did you get to the final step? I ran into (something probably stupid) a problem trying to bring to factor out the derivative term.

\frac{\partial g^{\mu\nu}}{\partial g_{\lambda\sigma}} = \frac{\partial}{\partial g_{\lambda\sigma}} (g_{\alpha\beta}g^{\alpha\mu}g^{\beta\nu}) = \delta^\lambda_\alpha\delta^\sigma_\beta g^{\alpha\mu} g^{\beta\nu} + g_{\alpha\beta}\frac{g^{\alpha\mu}}{g_{\lambda\sig ma}}g^{\beta\nu} + g_{\alpha\beta}g^{\alpha\mu}\frac{\partial g^{\beta\nu}}{g_{\lambda\sigma}}\implies
\frac{\partial g^{\mu\nu}}{\partial g_{\lambda\sigma}} = g^{\lambda\mu} g^{\sigma\nu} + \delta^{\nu}_\alpha \frac{g^{\alpha\mu}}{g_{\lambda\sig ma}} + \delta^\mu_\beta\frac{\partial g^{\beta\nu}}{\partial g_{\lambda\sigma}}\implies

\frac{\partial g^{\mu\nu}}{\partial g_{\lambda\sigma}} = g^{\lambda\mu} g^{\sigma\nu} + \frac{\partial g^{\nu\mu}}{\partial g_{\lambda\sigma}} + \frac{\partial g^{\mu\nu}}{\partial g_{\lambda\sigma}}\implies

\frac{\partial g^{\mu\nu}}{\partial g_{\lambda\sigma}} = -g^{\lambda\mu} g^{\sigma\nu}
 
Last edited:
I was just reading D'Inverno and happened to stumble across exercise 11.3 which is to show that

\frac{\partial g^{\mu\nu}}{\partial g_{\lambda\sigma}} = - \frac{1}{2}(g^{\mu\lambda}g^{\nu\sigma}+g^{\sigma\mu}g^{\lambda\nu})

which is actually equivalent to the result

\frac{\partial g^{\mu\nu}}{\partial g_{\lambda\sigma}} = -g^{\lambda\mu} g^{\sigma\nu}

because of symmetry of the metric tensor.

So it is correct after all.
 
Last edited:
  • Like
Likes Victor Zavala
In this video I can see a person walking around lines of curvature on a sphere with an arrow strapped to his waist. His task is to keep the arrow pointed in the same direction How does he do this ? Does he use a reference point like the stars? (that only move very slowly) If that is how he keeps the arrow pointing in the same direction, is that equivalent to saying that he orients the arrow wrt the 3d space that the sphere is embedded in? So ,although one refers to intrinsic curvature...
ASSUMPTIONS 1. Two identical clocks A and B in the same inertial frame are stationary relative to each other a fixed distance L apart. Time passes at the same rate for both. 2. Both clocks are able to send/receive light signals and to write/read the send/receive times into signals. 3. The speed of light is anisotropic. METHOD 1. At time t[A1] and time t[B1], clock A sends a light signal to clock B. The clock B time is unknown to A. 2. Clock B receives the signal from A at time t[B2] and...
So, to calculate a proper time of a worldline in SR using an inertial frame is quite easy. But I struggled a bit using a "rotating frame metric" and now I'm not sure whether I'll do it right. Couls someone point me in the right direction? "What have you tried?" Well, trying to help truly absolute layppl with some variation of a "Circular Twin Paradox" not using an inertial frame of reference for whatevere reason. I thought it would be a bit of a challenge so I made a derivation or...
Back
Top